Compatibilizer-Phase Morphology-Mechanical Property Relationships of Multicomponent Heterophase Polymer Blends

  • Hong-Fei Guo
  • Raja Mani
  • Ned V. Gvozdic
  • Dale J. Meier


The compatibilization of various three- and five-component blends of polyethylene, polystyrene, polypropylene, poly(methyl methacrylate) and polyvinylchloride has been investigated. The ultimate mechanical properties of such multi-component blends are related to their phase structures, which, in turn, are influenced by the nature of the compatibilizer used. Thus, in compatibilizing such blends, a properly chosen compatibilizer will result in a desired phase structure having improved mechanical properties, whereas another compatibilizer may lead to an undesirable phase structure with poor mechanical properties. The latter can result even though the compatibilizer is effective in promoting a finer dispersion and improving the interfacial adhesion. For blends with an encapsulation-type phase structure, the interface(s) between the encapsulating shell and the matrix is usually the primary interface(s) influencing the mechanical properties of the system, whereas for a blend with a separation-type phase structure, all of the matrix/particulate interfaces may be important.


Block Copolymer Phase Structure Interfacial Tension Interfacial Adhesion Maleic Anhydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. D. Webber, S. A. Swint, T. Conklin, and C. I. Chung, ANTEC, 2175 (1991).Google Scholar
  2. 2.
    M. Xanthos, A. Patel, S. Dey, S. S. Dagli, C. Jacob, T. J. Nosker, and R. W. Renfree, Adv. Polym. Technol., 13, 231 (1994).CrossRefGoogle Scholar
  3. 3.
    B. Cuerq, and M. Taha, Polym. Networks Blends, 5, 95 (1995)Google Scholar
  4. 4.
    S. Y. Hobbs, M. E. Dekkers, and V. H. Watkins, Polymer, 29, 1598 (1988).CrossRefGoogle Scholar
  5. 5.
    H-. F. Guo, N. V. Gvozdic, and D. J. Meier, Polym. Preprint, 36 (2), 120 (1995).Google Scholar
  6. 6.
    H-. F. Guo, S. Packirisamy, N. V. Gvozdic, and D. J. Meier, Polymer, 38 (4), 785 (1997).CrossRefGoogle Scholar
  7. 7.
    H-. F. Guo, N. V. Gvozdic, and D. J. Meier, in press, Polymer. Google Scholar
  8. 8.
    M. Xanthos, J. Grenci, S. H. Patel, A. Patel, C. Jacob, S. Dey, and S. S. Dagli; Polym. Compos., 16, 204 (1995).CrossRefGoogle Scholar
  9. 9.
    M. Lee, C. H. Sieh, K. M. Yeh, C. I. Chang, and P. L. C. Hao, J. Vinyl Technol., 2, 119 (1980).CrossRefGoogle Scholar
  10. 10.
    T. Vivier and M. Xanthos, J. Apply. Polym. Sci., 54, 569 (1995).CrossRefGoogle Scholar
  11. 11.
    H. Kawai and D. J. Meier, unpublished.Google Scholar
  12. 12.
    H-. F. Guo, S. Packirisamy, R. S. Mani, C. L. Aronson, N. V. Gvozdic, and D. J. Meier, submitted to Polymer. Google Scholar
  13. 13.
    A. Siegmann, J. Appl. Polym. Sci., 27, 1053 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Hong-Fei Guo
    • 1
  • Raja Mani
    • 1
  • Ned V. Gvozdic
    • 1
  • Dale J. Meier
    • 1
  1. 1.Michigan Molecular InstituteMidlandUSA

Personalised recommendations