Introduction to Interfacial Aspects of Multicomponent Polymer Materials

  • L. H. Sperling


This chapter introduces the interfacial aspects of multicomponent polymer materials, exploring the instruments used, the thickness of the interphases formed, and some of the more interesting results. Five kinds of surfaces and interfaces found in these materials are defined. The properties of silane coupling agents are explored. As an example of the state of the art, recent patents and literature in the field of latex blends are summarized.


Block Copolymer Graft Copolymer Lower Critical Solution Temperature Polymer Blend Spinodal Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. H. Sperling, Polymeric Multicomponent Materials: An Introduction, to be published by Wiley-Interscience, New York, 1997.Google Scholar
  2. 2.
    G. J. Fleer, M. A. Cohen Stuart, J. M. H. M. Scheutjens, T. Cosgrove, and B. Vincent, Polymers at Interfaces, Chapman and Hall, 1993.Google Scholar
  3. 3.
    H. H. Kausch, Polymer Fracture, 2nd Ed., Springer-Verlag, Berlin, 1987.Google Scholar
  4. 4.
    R. P. Wool, Polymer Interfaces: Structure and Strength, Hamer, Munich, 1995.Google Scholar
  5. 5.
    P. Cifra, E. Nies, and F. E. Karasz, Macromolecules, 27, 1166 (1994).CrossRefGoogle Scholar
  6. 6.
    E. Helfand and Y. Tagami, J. Chem. Phys., 56, 3592 (1972).CrossRefGoogle Scholar
  7. 7.
    A. W. Adamson, Physical Chemistry of Surfaces, 5th Ed., Wiley-Interscience, New York, 1990.Google Scholar
  8. 8.
    G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers, Wiley, NY, 1992.Google Scholar
  9. 9.
    T. L. Barr, Modern ESCA, CRC, Boca Raton, 1994.Google Scholar
  10. 10.
    J. L. Willett and R. P. Wool, Macromolecules, 26, 5336 (1993).CrossRefGoogle Scholar
  11. 11.
    O. L. Shaffer, R. Bagheri, J. Y. Qian, V. Dimonie, R. A. Pearson, and M. S. ElAasser, J. Appl. Polym. Sci., 58, 465 (1995).CrossRefGoogle Scholar
  12. 12.
    P. Debye, H. R. Anderson, Jr., and H. Brumberger, J. Appl. Phys., 28, 679 (1957).CrossRefGoogle Scholar
  13. 13.
    M. E. Myers, A. M. Wims, T. S. Ellis, and J. Barnes, Macromolecules, 23, 1371 (1990).CrossRefGoogle Scholar
  14. 14.
    D. Tyagi, J. E. McGrath, and G. L. Wilkes, Polym. Eng. Sci., 26, 1371 (1986).CrossRefGoogle Scholar
  15. 15.
    R. J. Goddard and S. L. Cooper, J. Polym. Sci., Part B, Polym. Phys., 32, 1557 (1994).CrossRefGoogle Scholar
  16. 16.
    T. P. Russell, Mat. Sci. Rep., 5, 171 (1990);CrossRefGoogle Scholar
  17. T. P. Russell, Physica, B221, 267 (1996).CrossRefGoogle Scholar
  18. 17.
    A. M. Mayes, R. D. Johnson, T. P. Russell, S. D. Smith, S. K. Satija, and C. F. Maikrzak, Macromolecules, 26, 1047 (1993).CrossRefGoogle Scholar
  19. 18.
    K. Landfester, C. Boeffel, M. Lambla, and H. W. Spiess, Macromolecules, 29, 5972 (1996).CrossRefGoogle Scholar
  20. 19.
    H. W. Spiess, Annu. Rev. Mater. Sci., 21, 131 (1991).CrossRefGoogle Scholar
  21. 20.
    S. Wu, J. Phys. Chem., 74, 632 (1970).CrossRefGoogle Scholar
  22. 21.
    J. Hildebrand and R. Scott, The Solubility of Nonelectrolytes, 3rd Ed., Reinhold, New York, 1949.Google Scholar
  23. 22.
    P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, 1953.Google Scholar
  24. 23.
    R. L. Scott, J. Chem. Phys., 17, 279 (1949).CrossRefGoogle Scholar
  25. 24.
    S. Krause, Macromolecules, 3, 84 (1970).CrossRefGoogle Scholar
  26. 25.
    P. J. Flory, J. Am. Chem. Soc., 87, 1833 (1965).CrossRefGoogle Scholar
  27. 26.
    D. Patterson, Polym. Eng. Sci., 22, 64 (1982).CrossRefGoogle Scholar
  28. 27.
    I. C. Sanchez, in Encyclopedia of Physical Science and Technology, 2nd Ed., R. A. Meyers, Ed., Academic Press, San Diego, Vol. 13, 1992, P. 153.Google Scholar
  29. 28.
    J. H. An and L. H. Sperling, in Cross-Linked Polymers: Chemistry, Properties and Applications, R. A. Dickie, S. S. Labana, and R. A. Bauer, Eds., American Chemical Society, Washington, DC 1988.Google Scholar
  30. 29.
    R. Reich, Phys. Lett., 114A, 90 (1986).CrossRefGoogle Scholar
  31. 30.
    S. Sakurai, TRIP (Trends in Polymer Science), 3, 90 (1995).Google Scholar
  32. 31.
    J. D. Vavasour and M. D. Whitmore, Macromolecules, 25, 5477 (1992).CrossRefGoogle Scholar
  33. 32.
    P. Rangarajan, R. A. Register, and L. J. Fetters, Macromolecules, 26, 4640 (1993).CrossRefGoogle Scholar
  34. 33.
    K. C. Douzinas and R. E. Cohen, Macromolecules, 25, 5030 (1992).CrossRefGoogle Scholar
  35. 34.
    E. P. Plueddemann, in Encyclopedia of Polymer Science and Engineering, 2nd Ed., J. I. Kroschwitz, Ed., Vol. 4, Wiley, New York, 1985.Google Scholar
  36. 35.
    M. Xanthos, Polym. Eng. Sci., 28, 1392 (1988).CrossRefGoogle Scholar
  37. 36.
    L. A. Utracki, Polymer Alloys and Blends, Hamer Publishers, Munich, 1990.Google Scholar
  38. 37.
    R. Fayt, R. Jerome, and P. Teyssie, J. Polym. Sci., Polym. Lett. Ed., 19, 79 (1981).CrossRefGoogle Scholar
  39. 38.
    J. T. Koberstein, MRS Bulletin, 21, 19 (1996).Google Scholar
  40. 39.
    I. Yilgor and J. E. McGrath, Adv. Polym. Sci., 86, 1 (1988).CrossRefGoogle Scholar
  41. 40.
    A. A. Patel, J. Feng, M. A. Winnik, and G. Vancso, Polymer, 37, 5577 (1996).CrossRefGoogle Scholar
  42. 41.
    A. G. Gilicinski and C. R. Hegedus, in Film Formation in Waterborne Coatings, T. Provder, M. A. Winnik, and M. W. Urban, Eds., ACS Books, Washington, DC, 1996.Google Scholar
  43. 42.
    J. M. Geurts, M. Lammers, and A. L. German, Colloids Surf., A, 108, 295 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • L. H. Sperling
    • 1
  1. 1.Polymer Interfaces Center Center for Polymer Science and Engineering Materials Research Center Department of Chemical Engineering Department of Materials Science and EngineeringLehigh UniversityBethlehemUSA

Personalised recommendations