Recent Developments in Magnetic Resonance Studies of Graphite Intercalation Compounds

  • Dan Davidov
  • Henry Selig
Part of the NATO ASI Series book series (NSSB, volume 148)


Magnetic resonance has been extensively used to study various aspects of solid state physics and chemistry over the last four decades. It is just natural, therefore, that these powerful techniques should have been applied to the investigation of graphite intercalation compounds (BIC). These are layered materials which are formed by insertion of atoms or molecules between the graphite planes.1 The intercalation process is usually accompanied by charge transfer between the intercalant species and the graphite layers. Similar to doped semiconductors they are classified as “donor” GIC or “acceptor” GIC depending on whether the inserted species donate or accept an electron. The intercalation process usually occurs without disrupting the integrity of the carbon sheets, but the interplanar bonds are weak and easily broken. This is believed to be the origin of some of the unique properties of GIC including the dramatic anisotropic conductivity,’ the “staging” phenomena,2,3 the 2-dimensional order-disorder and commensurate-incommensurate phase transitions,4 etc.


Skin Depth Graphite Layer Highly Orient Pyrolytic Graphite Electron Spin Echo Intercalation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.S. Dresselhaus and G. Dresselhaus, Adv. Phys. 30: 139 (1981);CrossRefGoogle Scholar
  2. R. Clarke and C. Uher, Adv. Phys. 33: 469 (1984).CrossRefGoogle Scholar
  3. 2.
    S.A. Safran, Phys. Rev. Letts. 44: 937 (1980);CrossRefGoogle Scholar
  4. G. Kirczenow: Phys. Rev. Letts. 52: 437 (1984).CrossRefGoogle Scholar
  5. 3.
    G.Kirczenow, Phys. Rev. Letts. 855: 2810 (1985).CrossRefGoogle Scholar
  6. 4.
    R. Clarke, N. Wada, S.A. Solin, Phys. Rev. Lett. 44: 1616 (1980);CrossRefGoogle Scholar
  7. A. Erbil, A.R. Kortan, K.J. Birgeneau and M.S. Dresselhaus, Phys. Rev. 828: 6329 (1983).Google Scholar
  8. 5.
    G. Wagoner, Phys. Rev. 118: 647 (1960).CrossRefGoogle Scholar
  9. 6.
    K.A. Muller and R. Kleiner, Phys. Lett. 1: 98 (1962).CrossRefGoogle Scholar
  10. 7.
    G.M.T. Foley, C. Zeller, E.R. Falardeau and F.L. Vogel, Solid State Comm. 24: 371 (1977);CrossRefGoogle Scholar
  11. F.L. Vogel, Jour. Mat. Sci. 12: 982 (1977).CrossRefGoogle Scholar
  12. 8.
    R.J. Elliot: Phys. Rev. 96: 266 (1954)CrossRefGoogle Scholar
  13. 9.
    J.C. Slonczewski and F.R. Weiss, Phys. Rev. 109:272 (1958).CrossRefGoogle Scholar
  14. 10.
    J.W. McClure and Y. Yafet, in “Proceedings of the Fifth Conference on Carbon,” 1961 Pergamon, New York (1962) Vol. 1, page 22.Google Scholar
  15. 11.
    P. Lauginie, H. Estrade, J. Conard, D. Guerard, P. Lagrange, M. El Makrini, Physica, 99B: 514 (1980).Google Scholar
  16. 12.
    S.K. Khanna, E.R. Falardeau, A.J. Heeger and J.E. Fischer, Sol. State Comm. 25: 1059 (1978).CrossRefGoogle Scholar
  17. 13.
    P. Pfluger, K.A. Muller, W. Berlinger, V. Geiser, H.J. Guntherodt, Synth. Met. 8: 15 (1983).CrossRefGoogle Scholar
  18. 14.
    H. Estrade-Szwarckopf, Helvetica Physica Acta, 58: 139 (1985).Google Scholar
  19. 15.
    B.R. Weinberger, J. Kaufer, A.J. Heeger, E.R. Falardeau and J.E. Fischer, Sol. State Comm. 27: 163 (1978).CrossRefGoogle Scholar
  20. 16.
    S. Ikehata, J.W. Milliken, A.J. Heeger and J.E. Fischer, Phys. Rev. B25: 1726 (1982).CrossRefGoogle Scholar
  21. 17.
    D. Davidov, D. Milo, I. Palchan and H. Selig, Synth. Met. 8: 83 (1983).CrossRefGoogle Scholar
  22. 18.
    R.M. Stein, L. Walmsley and C. Rettori, Phys. Rev. 832: 4134 (1985).Google Scholar
  23. 19.
    R.M. Stein, L. Walmsley, G.M. Gualberto and C. Rettori, Phys. Rev. B32: 4774 (1985).CrossRefGoogle Scholar
  24. 20.
    I. Palchan, D. Davidov, V. Zevin, G. Polatsek and H. Selig, Synt. Met. 12: 413 (1986).CrossRefGoogle Scholar
  25. 21.
    I. Palchan, F. Mustachi, D. Davidov and H. Selig, Synth. Met. 10: 101 (1985).CrossRefGoogle Scholar
  26. 22.
    G. Feher and A.F. Kip, Phys. Rev. 98: 337 (1955).CrossRefGoogle Scholar
  27. 23.
    F.J. Dyson, Phys. Rev. 98: 349 (1955).CrossRefGoogle Scholar
  28. 24.
    J. Blinowski, P. Kacman, C. Rigaux and M. Saint-Jean, Synthetic Metals, 12:419, in Proceedings of the International Symposium on GIC, Tsukuba, Japan (1985).Google Scholar
  29. 25.
    M. Saint-Jean, C. Rigaux, B. Clerjand, J. Blinowski, P. Kacman and O. Furdin, to be published (1986).Google Scholar
  30. 26.
    J.I. Kaplan, Phys. Rev. 115: 575 (1959).CrossRefGoogle Scholar
  31. 27.
    D. Davidov, O. Milo, I. Palchan and H. Selig, Synth. Met. 8: 83 (1983).CrossRefGoogle Scholar
  32. 28.
    D. Vaknin, I. Palchan, D. Davidov, H. Selig and D. Moses, submitted to Synth. Met. (1986).Google Scholar
  33. 29.
    G. Kirczenow, Phys. Rev. Lett. Synth. Met. 12: 143 (1985).Google Scholar
  34. 30.
    G. Kirzenow, Submitted to Phys. Rev.Google Scholar
  35. 31.
    S.E. Ulloa and G. Kirczenow, Phys. Rev. 633: 1360 (1986).Google Scholar
  36. 32.
    S. Miyazima, Synth. Met. 12: 155 (1985).CrossRefGoogle Scholar
  37. 33.
    V. Zevin and J.T. Suss, Submitted to Phys. Rev.Google Scholar
  38. 34.
    I. Palchan, D. Davidov, V. Zevin, G. Polatsek and H. Selig, Phys. Rev. 832: 5554 (1985).Google Scholar
  39. 35.
    I. Palchan, D. Davidov, V. Zevin, G. Polatsek and H. Selig, Synth. Metals 12: 413 (1985).CrossRefGoogle Scholar
  40. 36.
    G.C. Chingas, J. Milliken, H.A. Resing and T. Tsang, Synth. Met. 12: 131 (1985).CrossRefGoogle Scholar
  41. 37.
    D. Kang, K. Nomura and K. Kume, Synth. Metals, 12: 395 (1985).CrossRefGoogle Scholar
  42. 38.
    P. M. Richards, in “Physics of Superionic Conductors,” M.B. Salamon, ed., Springer-Verlag, Berlin, Heidelberg, New York (1979).Google Scholar
  43. 39.
    C.A. Sholl, J. Phys. C14: 447 (1981).Google Scholar
  44. 40.
    F.M. Richards and M.B. Salamon, Phys. Rev. 89: 32 (1974).Google Scholar
  45. 41.
    L.P. Kadanoff and P.C. Martin, Ann. Phys. (N.Y.) 24: 419 (1963).CrossRefGoogle Scholar
  46. 42.
    B.G. Silbernagel and F.R. Gamble, Phys. Rev. Lett. 32: 1436 (1979);CrossRefGoogle Scholar
  47. R.L. Kleinberg and B.G. Silbernagel, Sol. State Commun. 33: 867 (1980).CrossRefGoogle Scholar
  48. 43.
    B.H. Robinson, et al, Mol. Cryst. Liq. Cryst. 117: 421 (1985).CrossRefGoogle Scholar
  49. 44.
    D. Vaknin, Ph.D. Thesis, Jerusalem, Israel. (Unpublished)Google Scholar
  50. 45.
    J.R. Asik, M.A. Ball and C.P. Slichter, Phys. Rev. Lett. 16: 740 (1966);CrossRefGoogle Scholar
  51. J.R. Asik, M.A. Ball and C.P. Slichter, ibid, 181: 645 (1969);Google Scholar
  52. E.K. Cornell and C.F. Slichter, Phys. Rev. 180: 358 (1969);CrossRefGoogle Scholar
  53. D. Davidov, C. Rettori, R. Orbach, A Dixon and E.P. Chock, Phys. Rev. 11: 3546 (1975);CrossRefGoogle Scholar
  54. C. Rettori, D. Davidov, R. Orbach, E.P. Chock and B. Ricks, Phys. Rev. 11: 1 (1973)Google Scholar
  55. Y. Yafet, Jour. Appl. Phys. 42: 1564 (1971);Google Scholar
  56. F. Beuneu and P. Monod, Phys. Rev. 813: 3424 (1976);Google Scholar
  57. N.A.W. Holzwarth and M.J.G. Lee, Phys. Rev. 813: 2231 (1976).Google Scholar
  58. 46.
    F. Beuneu and P. Monod, Phys. Rev. 613: 3424 (1976);Google Scholar
  59. P. Monod and F. Beuneu, Phys. Rev. 819: 911 (1979).Google Scholar
  60. 47.
    K. Kume, K. Nomura, Y. Hiroyama, Y. Maniwa, H. Suematsu and S. Tanuma, Synth. Met. 12: 307 (1985).CrossRefGoogle Scholar
  61. 48.
    Orna Milo, M.Sc. Thesis, Jerusalem, Israel 1983. ( Unpublished )Google Scholar
  62. 49.
    M. Suzuki, K. Koga and Y. Jinizaki, in Graphite Intercalation Compounds - Progress of Research in Japan, S. Tanuma and H. Ktamimura, eds., (1985) page 18 and reference therein.Google Scholar
  63. 50.
    D. Vaknin, D. Davidov, H. Selig, V. Zevin, I. Felner and Y. Yeshurun, Phys. Rev. B31: 3212 (1985).CrossRefGoogle Scholar
  64. 51.
    D. Vaknin, D. Davidov, V. Zevin and H. Selig, Submitted to Phys. Rev.Google Scholar
  65. 52.
    D. Vaknin, D. Davidov, H. Selig and Y. Yeshurun, J. Chem. Phys. 83: 3859 (1985).CrossRefGoogle Scholar
  66. 53.
    F. Bloch and P. Wangsness, Phys. Rev. 89: 728 (1953);CrossRefGoogle Scholar
  67. F. Bloch, ibid. 102: 104 (1956);Google Scholar
  68. A. Redfield, ibid. 98: 787 (1955).Google Scholar
  69. 54.
    P.M. Levy, Phys. Rev. 177:509 (1969) and reference therein.Google Scholar
  70. 55.
    S. Ikehata, T. Morimoto, H. Suematsu and S. Tanuma, Synth. Met. 12: 313 (1985).CrossRefGoogle Scholar
  71. 56.
    See for example G.R. Miller, H.A. Resing, M.J. Moran, L. Banks, F.L. Vogel, A. Pron and D. Billaud, Synth. Met. 8: 77 (1983);Google Scholar
  72. G.R. Miller, H.A. Resing, F.L. Vogel, A. Pron, T.C. Wu and D. Billaud, Jour. Phys. Chem. 84: 3333 (1984).CrossRefGoogle Scholar
  73. 57.
    D. Brusilovsky, D. Vaknin, I. Ohana, H. Selig and D. Davidov, to be published (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Dan Davidov
    • 1
  • Henry Selig
    • 2
  1. 1.Racah Institute of PhysicsThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Institute of ChemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations