Superconductivity in Graphite Intercalation Compounds

  • G. Dresselhaus
  • A. Chaiken
Part of the NATO ASI Series book series (NSSB, volume 148)


Anisotropic superconductivity has been observed in a variety of layered materials including deliberately structured materials,1 transition metal dichalcogenides intercalated with large organic molecules,2 and graphite intercalation compounds (GICs). Because of the long range of the superconducting coherence distance ξ, the observation of 2D superconductivity focuses on samples with superlattice repeat distances I c large compared with the superconducting coherence distance to achieve the condition I c > ξ. Molecular beam epitaxy and magnetron sputtering offer the greatest promise for quantitative studies of 2D superconductivity and the 2D–3D crossover because of the flexibility of these synthesis techniques for the generation and control of large superlattice repeat distances in deliberately structured superconductors.1 Historically, early work on this subject was carried out with transition metal dichalcogenides intercalated with large organic molecules, where repeat distances of I c ≈ 60 Å were achieved for example by intercalation of n-octadecylamine into TaS2.3 Though intercalate repeat distances greater than the superconducting coherence length have not yet been achieved in GICs, the superconducting GICs have nevertheless provided an interesting system for the study of anisotropic superconductivity phenomena. In this paper, we briefly review superconductivity in GICs and provide some comparison with anisotropic superconducting behavior in deliberately structured materials and intercalated transition metal dichalcogenides.


Critical Field Intercalation Compound Repeat Distance Super Lattice Graphite Intercalation Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.S. Dresselhaus, (this volume) p. 1.Google Scholar
  2. 2.
    W.Y. Liang, (this volume) p. 31.Google Scholar
  3. 3.
    F.R. Gamble and T.H. Geballe, “Treatise on Solid State Chemistry, Inclusion Compounds”, ( Plenum, New York, 1976 ), Chapter 3.Google Scholar
  4. 4.
    N.B. Hannay, T.H. Geballe, B.T. Matthias, K. Andres, P. Schmidt and D. Mac-Nair, Phys. Rev. Lett. 14, 255 (1965).CrossRefGoogle Scholar
  5. 5.
    Y. Koike, H. Suematsu, K. Higuchi and S. Tanuma, Solid State Commun. 27, 623 (1978).CrossRefGoogle Scholar
  6. 6.
    Y. Iye and S. Tanuma, Synthetic Metals 5, 257 (1983).CrossRefGoogle Scholar
  7. 7.
    R. Clarke and C. Uher, Adv. Phys. 33, 469 (1984).CrossRefGoogle Scholar
  8. 8.
    Y. Iye, Intercalated Graphite, edited by M.S. Dresselhaus, G. Dresselhaus, J.E. Fischer and M.J. Moran, (Elsevier Science, North Holland, Amsterdam, 1983), 20, p. 185.Google Scholar
  9. 9.
    M. Kobayashi, T. Enoki, H. Inokuchi, M. Sano, A. Sumiyama, Y. Oda and H. Nagano, Synthetic Metals 12, 341 (1985).CrossRefGoogle Scholar
  10. 10.
    S. Kaneiwa, M. Kobayashi and I. Tsujikawa, J. Phys. Soc. Japan 51, 2375 (1982).CrossRefGoogle Scholar
  11. 11.
    G. Timp, B.S. Elman, M.S. Dresselhaus, and P. Tedrow, Proceedings of the Materials Research Society 21, 201 (1983).CrossRefGoogle Scholar
  12. 12.
    G. Roth, A. Chaiken, T. Enoki, N.C.Yeh, G. Dresselhaus and P. Tedrow, Phys. Rev. B32, 533 (1985).CrossRefGoogle Scholar
  13. 13.
    P. Lagrange, A. Bendriss-Rerhrhaye, J.F. Marêché and E. McRae, Synthetic Metals 12, 201 (1985).CrossRefGoogle Scholar
  14. 14.
    L.E. Delong and P.C. Eklund, Synthetic Metals 5, 291 (1983).CrossRefGoogle Scholar
  15. 15.
    J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).CrossRefGoogle Scholar
  16. 16.
    C. Kittel, Introduction to Solid State Physics, Sixth Edition (J. Wiley Si Sons, New York) p. 631 (1985).Google Scholar
  17. 17.
    M. Tinkham, Introduction to Superconductivity, Robert E. Krieger Publishing Company, (1980).Google Scholar
  18. 18.
    W.E. Lawrence and S. Doniach, in “Proceedings of the Twelvth International Conference on Low Temperature Physics”, edited by E. Kanda ( Academic Press of Japan, Kyoto, 1971 ), p. 361.Google Scholar
  19. 19.
    S.T. Ruggiero, T.W. Barbee, Jr. and M.R. Beasley, Phys. Rev. B26, 4894 (1982).CrossRefGoogle Scholar
  20. 20.
    S.T. Ruggiero and M.R. Beasley, in “Synthetic Modulated Structures”, edited by L.L. Chang and B.C. Giessen, ( Academic Press, Orlando, Florida, 1985 ), p. 365.CrossRefGoogle Scholar
  21. 21.
    R.C. Morris, R.V. Coleman, and R. Bhandar, Phys. Rev. B5, 895 (1972).CrossRefGoogle Scholar
  22. 22.
    R.A. Klemm, A. Luther and M.R. Beasley, Phys. Rev. B12, 877 (1975).CrossRefGoogle Scholar
  23. 23.
    L.E. Delong, V. Yeh, V. Tondiglia, P.C. Eklund, S.E. Lampert, and M.B. Maple, Phys. Rev. B26, 6315 (1982).CrossRefGoogle Scholar
  24. 24.
    R. Al-Jishi, Phys. Rev. B28, 112 (1983).CrossRefGoogle Scholar
  25. 25.
    A. Shimizu and H. Kamimura, Synthetic Metals 5, 301 (1983).CrossRefGoogle Scholar
  26. 26.
    T. Ohno, K. Nakao and H. Kamimura, J. Phys. Soc. Japan 47, 1125 (1979).CrossRefGoogle Scholar
  27. 27.
    M. Kobayashi and I. Tsujikawa, Physica 105B, 439 (1981)Google Scholar
  28. M. Kobayashi and I. Tsujikawa, J. Phys. Soc. Jpn. 50, 3245 (1981).CrossRefGoogle Scholar
  29. 28.
    F.R. Gamble, F.J. DiSalvo, R.A. Klemm, and T.H. Geballe, Science 168, 568 (1970).CrossRefGoogle Scholar
  30. 29.
    D.E. Prober, R.E. Schwall and M.R. Beasley, Phys. Rev. B21, 2717 (1980).CrossRefGoogle Scholar
  31. 30.
    S.T. Ruggiero, Ph.D. Thesis, Stanford University, (unpublished ), 1981.Google Scholar
  32. 31.
    I. Banerjee, Q.S.Yang, C.M. Falco and I.K. Schuller, Phys. Rev. B28, 5037 (1983).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • G. Dresselhaus
    • 1
  • A. Chaiken
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations