Electron Spectroscopies

  • G. Dresselhaus
  • M. Laguës
Part of the NATO ASI Series book series (NSSB, volume 148)


The use of electron spectroscopies to investigate the electronic structure of solids is generally applicable to study the microscopic excitations of intercalation compounds for all ranges of energy. Electron spectroscopies in graphite intercalation compounds (GICs) are the focus of this chapter. The common characteristic of electron spectroscopies is that they require the spectral analysis of an electron beam emitted from a solid. Similarly, photon spectroscopies require the measurement of the directions, polarizations and energies of photons transmitted through or reflected from solids.1,2 Electron spectroscopies often involve both photons and electrons (e.g., photoemission or Auger electron spectroscopy) or can be restricted solely to electrons (e.g., characteristic energy loss spectra). In this chapter, we will also briefly discuss positron annihilation and μ meson spin rotation (μ-SR) which though bulk measurements give information closely related to that obtained by Auger or other surface spectroscopy techniques. Since the application of electron spectroscopies to the study of the electronic structure gives information about both surface and bulk states, it is important to use diverse experimental techniques to obtain a consistent model for the bulk electronic structure of a given GIC.


Electron Spectroscopy Positron Annihilation Interband Transition Electron Energy Loss Spectroscopy Intercalation Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Rigaux, (this volume) p. 235.Google Scholar
  2. 2.
    P.C. Eklund, (this volume) p. 257.Google Scholar
  3. 3.
    Topics in Applied Physics, Photoemission in Solids I & II, edited by L. Ley and M. Cardona, (Springer-Verlag, Berlin, Heidelberg, New York, 1979 ) Vol. 26 & 27.Google Scholar
  4. 4.
    E.W. Plummer and W. Eberhardt, Advances in Chem. Phys. 49, 533 (1982).CrossRefGoogle Scholar
  5. 5.
    L.A. Grunes, I.P. Gates, J.J. Ritsko, E.J. Mele, D.P. DiVincenzo, M.E. Preil, and J.E. Fischer, Phys. Rev. B28, 6681 (1983).CrossRefGoogle Scholar
  6. 6.
    D.M. Hwang, N.W. Parker, M. Utlaut, and A.V. Crewe, Phys. Rev. B27, 1458 (1983).CrossRefGoogle Scholar
  7. 7.
    J.E. Fischer, J.M. Bloch, C.C. Shieh, M.E. Preil, and K. Jelly, Phys. Rev. B31, 4773 (1985).CrossRefGoogle Scholar
  8. 8.
    J.J. Ritsko and E.J. Mele, Phys. Rev. B21, 730 (1980).Google Scholar
  9. 9.
    P. Oelhafen, P. Pfluger, and H.J. Güntherodt, Solid State Commun. 32, 885 (1979).CrossRefGoogle Scholar
  10. 10.
    M. Laguës, D. Marchand, C. Frétigny, and A.P. Legrand, Solid State Commun. 49, 739 (1984).CrossRefGoogle Scholar
  11. 11.
    M. Laguës, D. Marchand, and C. Frétigny, Annales de Physique 11, 49 (1986).Google Scholar
  12. 12.
    J.H. Scofield, J. Elec. Spec. and Related Phenomena 8, 129 (1976).Google Scholar
  13. 13.
    S.B. DiCenzo, Synthetic Metals 12, 251 (1985).Google Scholar
  14. 14.
    J.J. Lander, Phys. Rev. 91, 1382 (1953).Google Scholar
  15. 15.
    B.I. Dunlap, D.E. Ramaker, and J.S. Murday, Phys. Rev. B25, 6439 (1982).CrossRefGoogle Scholar
  16. 16.
    C. Frétigny, D. Marchand, and M. Laguës, Phys. Rev. B32, 8462 (1985).CrossRefGoogle Scholar
  17. 17.
    S.D. Kevan, Phys. Rev. B33, 4364 (1986).Google Scholar
  18. 18.
    W. Eberhardt, I.T. McGovern, E.W. Plummer, and J.E. Fischer, Phys. Rev. Lett. 44, 200 (1980).CrossRefGoogle Scholar
  19. 19.
    N.A.W. Holzwarth, S.G. Louie, and S. Rabii, Phys. Rev. B29, 1013 (1983).Google Scholar
  20. 20.
    D. Marchand, C. Frétigny, M. Laguës, F. Batallan, Ch. Simon, I. Rosenman, and R. Pinchaux, Phys. Rev. B30, 4788 (1984).CrossRefGoogle Scholar
  21. 21.
    T. Takahashi, H. Tokailin, T. Sagawa, and H. Suematsu, Synthetic Metals 12, 239 (1985).CrossRefGoogle Scholar
  22. 22.
    R.C. Tatar and S.Rabii, Phys. Rev. B25, 4126 (1982).Google Scholar
  23. 23.
    T. Ohno, K. Nakao, and H. Kamimura, J. Phys. Soc. Japan 47, 1125 (1979).CrossRefGoogle Scholar
  24. 24.
    E.J. Mele and J.J. Ritsko, Phys. Rev. Letters 43, 68 (1979); J.J. Ritsko, E.J. Mele, and I.P. Gates, Phys. Rev. B24, 6114 (1981).Google Scholar
  25. 25.
    E. Cartier, F. Heinrich, U.M. Gubler, P. Pfluger, V. Geiser and H.-J. Güntherodt, Synthetic Metals 8, 119 (1983).CrossRefGoogle Scholar
  26. 26.
    S. Berko, private communication.Google Scholar
  27. 27.
    H. Kamimura and S. Rabii, private communication.Google Scholar
  28. 28.
    T. Kondow, Y. Kuno, R. Kadono, J. Imazato, K. Nagamine, and T. Yamazaki, Physics Letters 110A, 319 (1985).CrossRefGoogle Scholar
  29. 29.
    K.Y. Szeto, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • G. Dresselhaus
    • 1
  • M. Laguës
    • 2
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Ecole Supérieure de Physique et de Chimie IndustriellesParis Cedex 05France

Personalised recommendations