Orientational Locking of Incommensurate Lattices in Mental Chloride GICs

  • P. Behrens
  • W. Metz
Part of the NATO ASI Series book series (NSSB, volume 148)


In the study of the structures of GIC the orientational locking of incommensurate lattices is a challenging problem: Although the incommensurability of the graphite and the intercalate in-plane lattice indicates that host-guest interactions are weaker than the interactions between the intercalate molecules, most of the incommensurate intercalate lattices exhibit a definite rotational orientation δ with regard to the axis of the hexagonal in-plane lattice of graphite [1]. In order to look for the reasons of this astonishingly behaviour we turned to the study of metal di- and trichloride GICs with simple in-plane structures of the intercalate. These structures are shown in Fig. 1. They consist of a double layer of close-packed chlorine atoms. Metal atoms occupy all or two thirds of all octahedral sites of this double layer, leading to stoichiometries MeC12 and MeC13 resp., for the metal chloride layer.


Double Layer Rotation Angle Metal Atom Chlorine Atom Octahedral Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Moret, this issue, p. 185, and references cited thereinGoogle Scholar
  2. [2]
    A. Herold. 321; Ed. F. Levy; Reidel, Dordrecht, Holland (1979)Google Scholar
  3. [3]
    A.W.S. Johnson, Acta Cryst. 23, 770 (1967)CrossRefGoogle Scholar
  4. [4]
    S. Flandrois, J.M. Masson, J.C. Rouillon, J. Gaultier, C. Hauw Synth. Met. 3, 1 (1981)CrossRefGoogle Scholar
  5. [5]
    J.M. Cowley, J.A. Ibers, Acta Cryst. 9, 421 (1956)CrossRefGoogle Scholar
  6. [6]
    W. Metz, E.J. Schulze, Z. Krist. 142,-409 (1975)Google Scholar
  7. [7]
    F. Rousseaux, R. Vangelisti, A. Plançon, D. Tchoubar Rev. Chim. Miner. 19, 572 (1982)Google Scholar
  8. [8]
    R. Vangelisti, A. Herold, Carbon 14, 33 (1976)CrossRefGoogle Scholar
  9. [9]
    R. Heinrich, Thesis, Hamburg (1978)Google Scholar
  10. [10]
    M. Elahy, M. Shayegan, K.Y. Szeto, G. Dresselhaus Synth. Met. 8, 35 (1983)Google Scholar
  11. [11]
    F. Baron, S. Flandrois, C. Hauw, J. Gaultier Solid State Commun. 42, 759 (1982)CrossRefGoogle Scholar
  12. [12]
    T. Dziemanowicz, W.C. Forsman, R. Vangelisti, A. Herold Carbon 22, 53 (1984)CrossRefGoogle Scholar
  13. [13]
    W. Rüdorff, R. Zeller, Z. Anorg. Allg. Chem. 279, 182 (1955)CrossRefGoogle Scholar
  14. [14]
    P. Behrens, U. Wiegand, W. Metz, Proceedings of the 4th International Carbon Conference Carbon ’86, Baden-Baden (1986), p. 502Google Scholar
  15. [15]
    P. Behrens, W. Metz, to be publishedGoogle Scholar
  16. [16]
    G. Schoppen, Thesis, Hamburg (1978)Google Scholar
  17. [17]
    W. Rüdorff, E. Stumpp, W. Spriessler, F.W. Siecke Angew. Chem. 75, 130 (1963)Google Scholar
  18. [18]
    K. Ohhashi, J Tsukijawa, Journ. Phys. Soc. Japan 37, 63 (1974)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • P. Behrens
    • 1
  • W. Metz
    • 1
  1. 1.Institute of Physical ChemistryUniversity of HamburgHamburg 13Germany

Personalised recommendations