Microscopic Studies of Intercalated Graphite

  • M. S. Dresselhaus
  • J. S. Speck
Part of the NATO ASI Series book series (NSSB, volume 148)

Abstract

In recent years a variety of high resolution microscopic probes have become available, providing non-statistical information on many structural issues, including the c-axis structure, staging fidelity, the in-plane structure, novel surface features, intercalant island formation, domain structure and superlattice formation.1 With regard to such issues as staging fidelity, the information provided by x-ray and microscopy probes is complementary,2 whereas microscopy provides unique information about phenomena such as intercalant island morphology, the structure near surface steps and the nature of Daumas-Hérold domains. Microscopy is indeed a powerful tool for the study of charge density wave (CDW) phases in transition metal dichalcogenide systems and of phase transitions associated with such phases.3 No clear evidence for CDW phases have yet been reported for GICs.

Keywords

Scan Tunneling Microscope Electron Diffraction Pattern Scanning Transmission Electron Microscope Rutherford Backscattering Spectrometry Intercalate Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.S. Dresselhaus (this volume) p. 1.Google Scholar
  2. 2.
    R. Moret (this volume) p. 185.Google Scholar
  3. 3.
    W.Y. Liang (this volume) p. 31.Google Scholar
  4. 4.
    G. Dresselhaus and M. Lagües (this volume) p. 271.Google Scholar
  5. 5.
    L. Salamanca-Riba, G. Roth, J.M. Gibson, G. Dresselhaus and R.J. Birgeneau, Phys. Rev. B33, 2738 (1986)CrossRefGoogle Scholar
  6. L. Salamanca-Riba, Ph.D. thesis MIT (1985), unpublished.Google Scholar
  7. 6.
    J.C. Spence, “Experimental High Resolution Electron Microscopy”, ( Oxford, Clarendon, 1981 ).Google Scholar
  8. 7.
    D. Dorignac, M.J. Lahana, R. Jagut, B. Jouffrey, S. Flandrois and C. Hauw, Mat. Res. Soc. Symp. 20 (1983)Google Scholar
  9. M.S. Dresselhaus, G. Dresselhaus, J.E. Fischer and M.J. Moran, (Elsevier Science, North Holland, Amsterdam, 1983 ), p. 33.Google Scholar
  10. 8.
    G. Timp and M.S. Dresselhaus, J. Phys. C 17, 2641 (1984).Google Scholar
  11. 9.
    J.M. Thomas, G.R. Millward, N.C. Davies and E.L. Evans, J. Chem. Soc. Dalton Trans., 2443 (1976)Google Scholar
  12. J.M. Thomas, G.R. Millward, R. Schlögl and H.P. Boehm, Mat. Res. Bull., 15, 671 (1980).CrossRefGoogle Scholar
  13. 10.
    M. Heerschap, P. Delavignette and S. Amelinckx, Carbon, 1, 235 (1964)CrossRefGoogle Scholar
  14. M. M. Heerschap and P. Delavignette, Carbon, 5, 383 (1967).CrossRefGoogle Scholar
  15. 11.
    M.S. Dresselhaus and G. Dresselhaus, Adv. Phys. 30, 139 (1981).CrossRefGoogle Scholar
  16. 12.
    S.G.J Mochrie, A.R. Kortan, R.J. Birgeneau and P.M. Horn, Phys. Rev. Lett. 53, 985 (1984).CrossRefGoogle Scholar
  17. 13.
    S. Flandrois, J.M. Masson, J.C. Rouillon, J. Gaultier and C. Hauw, Synthetic Metals 3, 1 (1981).CrossRefGoogle Scholar
  18. 14.
    S. Flandrois, A.W. Hewat, C. Hauw and R.H. Bragg, Synthetic Metals 7, 305 (1983).CrossRefGoogle Scholar
  19. 15.
    F. Baron, S. Flandrois, C. Hauw and J. Gaultier, Solid State Commun. 42, 759 (1982).CrossRefGoogle Scholar
  20. 16.
    M. Matsuura, Y. Murakami, K. Takeda, H. Ikeda, and M. Suzuki, Synthetic Metals 12, 427 (1985).CrossRefGoogle Scholar
  21. 17.
    P. Behrens and W. Metz (this volume) p. 229.Google Scholar
  22. 18.
    J.S. Speck, (unpublished).Google Scholar
  23. 19.
    J. Speck, X. Hao, and M.S. Dresselhaus (this volume) p. 233.Google Scholar
  24. 20.
    N. Kambe, G. Dresselhaus and M.S. Dresselhaus, Phys. Rev. B21, 3491 (1980); A.N. Berker, N. Kambe, G. Dresselhaus and M.S. Dresselhaus, Phys. Rev. Lett. 45, 1452 (1980).CrossRefGoogle Scholar
  25. 21.
    D.M. Hwang, Phys. Rev. B27, 1119 (1983).CrossRefGoogle Scholar
  26. 22.
    D. Hwang, N.W. Parker, M. Utlaut and A.V. Crewe, Phys. Rev. B27, 1458 (1983).CrossRefGoogle Scholar
  27. 23.
    G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982)CrossRefGoogle Scholar
  28. G. Binnig, H. Fuchs, Ch. Gerber, H. Rohrer, E. Stoll, and E. Tosatti, Europhys. Lett. 1, 31 (1986).CrossRefGoogle Scholar
  29. 24.
    S.-I. Park and C.F. Quate, App/. Phys. Lett. 48, 112 (1986).CrossRefGoogle Scholar
  30. 25.
    R. Wiesendanger, R. Schlógl, and 11.-J. Güntherodt, Extended abstracts for Carbon ‘86, Baden-Baden Conference, p. 207 (1986).Google Scholar
  31. 26.
    D.M. Hwang, X.W. Qian and S.A. Solin, Phys. Rev. Lett. 53, 1473 (1984).CrossRefGoogle Scholar
  32. 27.
    S.A. Solin (this volume) p. 173.Google Scholar
  33. 28.
    G. Dresselhaus and M.S. Dresselhaus (this volume) p. 407.Google Scholar
  34. 29.
    R. Levi-Setti, G. Crow, Y.L. Wang, N.W. Parker, R. Mittleman and D.M. Hwang, Phys. Rev. Lett. 54, 2615 (1985).CrossRefGoogle Scholar
  35. 30.
    G. Braunstein, B. Elman, J. Steinbeck, M.S. Dresselhaus, T. Venkatesan and B. Wilkins, Extended Abstracts for the Symposium on Graphite Intercalation Compounds, Materials Research Society Proceedings 1984, edited by P.C. Eklund, M.S. Dresselhaus and G. Dresselhaus, p. 168.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • M. S. Dresselhaus
    • 1
  • J. S. Speck
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations