Skip to main content

Synthesis of Graphite Intercalation Compounds

  • Chapter
Book cover Intercalation in Layered Materials

Part of the book series: NATO ASI Series ((NSSB,volume 148))

Abstract

The intercalation process involves a chemical reaction between a layered host material and reagent which results in the insertion of new atomic or molecular layers, termed intercalate layers, between the host layers. In graphite, this reaction takes advantage of the weak (van der Waals) bonds between carbon layers. The intralayer hexagonal organization of the carbon atoms is not affected by intercalation. Typical syntheses of graphite intercalation compounds (GICs) take place at moderate temperatures (T< 700°C), and occur on a relatively short time scale (several, minutes to several days). Intercalation reactions are known to occur between graphite and literally hundreds of reagents. The compounds are, for the most part, very unstable in the open laboratory environment, and they must therefore be handled with extreme care and encapsulated in vacuum or in an overpressure of inert gas or reactant. In many cases, the samples are sufficiently unstable to merit in situ investigation of the physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.A. Solin, Adv. Chem. Phys. 49, 455 (1982).

    Article  CAS  Google Scholar 

  2. M.S. Dresselhaus and G. Dresselhaus, Adv. Phys. 30, 139 (1981).

    Article  CAS  Google Scholar 

  3. A. Herold, in Physics and Chemistry of Materials with Layered Structures, Vol. 6, ed. F. Levy ( Dordrecht, Reidel, 1979 ), p. 323.

    Google Scholar 

  4. L. Ebert, Am. Rev. Mat. Sci. 6, 181 (1876).

    Google Scholar 

  5. E. Stumpp, Mat. Sci. Engng. 31, 53, (1977)

    Article  CAS  Google Scholar 

  6. J.O. Bessenhard, H. Moewald and J.J. Nickl, Syn. Met. 3, 187 (1981).

    Article  Google Scholar 

  7. M. El Makrini, D. Guerard. P. Lagrange and A. Herold, physica 99B 481 (1980).

    Google Scholar 

  8. P. Lagrange, M. El Makrini, D. Guérard and A. Hérold, Syn. Met. 2, 191 (1980).

    Article  CAS  Google Scholar 

  9. D. Guerard, P. Lagrange, M. El Makrini and A. Herold, Syn. Met. 3, 15 (1981).

    Article  CAS  Google Scholar 

  10. F. Beguin, R. Setton, A. Hamwi and P. Touzain, Mat. Sci. Eng. 40, 167 (1979).

    Article  CAS  Google Scholar 

  11. F. Seguin, R. Setton. L. Facchini, A.P. Legrand, G. Merle and C. Mai Syn. Met. 2, 161 (1980).

    Article  Google Scholar 

  12. Proceedings of the International Symposium on Graphite Intercalation Compounds Syn. Met. 12 (1985).

    Google Scholar 

  13. M.S. Dresselhaus, Superlattices and Intercalation Compounds, in this volume, p. 1.

    Google Scholar 

  14. D.M. Hwang, X.W. Qian and S.A. Solin, Phys. Rev. Lett. 53, 1478 (1984).

    Article  Google Scholar 

  15. D.F. Shriver, The Manipulation of Air-sensitive Compounds, ( McGraw-Hill, New York, 1969 ).

    Google Scholar 

  16. M.S. Dresselhaus, Graphite Fibers, in this volume, p. 461.

    Google Scholar 

  17. A.W. Moore, in Physics and Chemistry of Carbon, Vol. 11, ed. P.L. Walker and P.S. Thrower ( Dekker, New York, 1973 ) p. 69.

    Google Scholar 

  18. J.G. Hooley, Carbon 10, 155 (1972), Mat. Sci, Engng. 31, 17 (1977).

    Google Scholar 

  19. J.G. Hooley, W.P. Garby and J. Valentin, Carbon 3, 7 (1965).

    Article  CAS  Google Scholar 

  20. M.B. Dowell, Mat. Sci. Engng. 31, 129 (1977).

    Article  CAS  Google Scholar 

  21. D.E. Nixon and G.S. Parry, J. Phys. D, 1, 291 (1968).

    Article  CAS  Google Scholar 

  22. R. Nishitani, Y. Uno and H. Suematsu, in Summary Report The Study of Graphite Intercalation Compounds eds. S. Tanuma and H. Kamimura, p. 25 (1984).

    Google Scholar 

  23. See for example, J.O. Bessenhard, H. Moewald, J.J. Nickl, W. Biberacher and W. Foag, Syn. Met. 7, 185 (1983).

    Google Scholar 

  24. P.C. Eklund, E.T. Arakawa, J.L. Zarestky, W.A. Kamitakahara and G.D. Mahan, Syn. Met. 12, 97 (1985).

    Article  CAS  Google Scholar 

  25. S.K. Hark, B.R. York, S.D. Mahanti and S.A. Solin, Solid St. Commun. 50, 595 (1984).

    Article  CAS  Google Scholar 

  26. G.L. Doll and P.C. Eklund, unpublished.

    Google Scholar 

  27. K. Watanabe, T. Kondow, T. Onishi and K. Tamura, Chem. Lett. 51 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eklund, P.C. (1986). Synthesis of Graphite Intercalation Compounds. In: Dresselhaus, M.S. (eds) Intercalation in Layered Materials. NATO ASI Series, vol 148. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5556-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5556-5_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5558-9

  • Online ISBN: 978-1-4757-5556-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics