Severity of Illness Scoring Systems

  • J. A. S. Ball
  • J. W. Redman
  • R. M. Grounds


Despite at least 20 years of evolution and with an ever-increasing number of systems, severity of illness quantification remains an imperfect and misused art. To many practicing clinicians the subject remains difficult and is often misinterpreted. Significant discrepancies exist between what these systems actually tell us and what we would like to know. Our aim in this chapter is to highlight these discrepancies and suggest, as have others, that new systems, developed in novel ways, are required if we want reliable answers to certain questions.


Intensive Care Unit Admission Intensive Care Unit Patient Multiple Organ Dysfunction Syndrome Simplify Acute Physiology Score Logistic Organ Dysfunction Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lasch C (1979) The Culture of Narcissism: American Life in an Age of Diminishing Expectations, WW Norton, New YorkGoogle Scholar
  2. 2.
    Cullen DJ, Civetta JM, Briggs BA, Ferrara LC (1974) Therapeutic intervention scoring system: a method for quantitative comparison of patient care. Crit Care Med 2: 57–60PubMedCrossRefGoogle Scholar
  3. 3.
    Keene AR, Cullen DJ (1983) Therapeutic Intervention Scoring System: update 1983. Crit Care Med 11: 1–3PubMedCrossRefGoogle Scholar
  4. 4.
    Cullen DJ, Nemeskal AR, Zaslaysky AM (1994) Intermediate TISS: a new Therapeutic Intervention Scoring System for non-ICU patients. Grit Care Med 22: 1406–1411CrossRefGoogle Scholar
  5. 5.
    Miranda DR, de Rijk A, Schaufeli W (1996) Simplified Therapeutic Intervention Scoring System: the TISS-28 items–results from a multicenter study. Crit Care Med 24: 64–73PubMedCrossRefGoogle Scholar
  6. 6.
    Bartlett RH, Gazzaniga AB, Wilson AF, Medley T, Wetmore N (1975) Mortality prediction in adult respiratory insufficiency. Chest 67: 680–684PubMedCrossRefGoogle Scholar
  7. 7.
    Shoemaker WC, Chang P, Czer L, Bland R, Shabot MM, State D (1979) Cardiorespiratory monitoring in postoperative patients: I. Prediction of outcome and severity of illness. Crit Care Med 7: 237–242PubMedCrossRefGoogle Scholar
  8. 8.
    Knaus WA, Zimmerman JE, Wagner DP, Draper EA, Lawrence DE (1981) APACHE-acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med 9: 591–597PubMedCrossRefGoogle Scholar
  9. 9.
    Ridley S (1998) Severity of illness scoring systems and performance appraisal. Anaesthesia 53: 1185–1194PubMedCrossRefGoogle Scholar
  10. 10.
    Harrell FE, Califf RM, Pryor DP (1984) Regression models for prognostic prediction: advantages, problems and suggested solutions. Stat Med 3: 143–152PubMedCrossRefGoogle Scholar
  11. 11.
    Le Gall JR, Loirat P, Alperovitch A, et al (1984) A simplified acute physiology score for ICU patients. Crit Care Med 12: 975–977PubMedCrossRefGoogle Scholar
  12. 12.
    Le Gall JR, Loirat P, Nicolas F, et al (1983) [Use of a severity index in 8 multidisciplinary resuscitation centers]. Presse Med 12: 1757–1761Google Scholar
  13. 13.
    Youden WJ (1950) Index for rating diagnostic tests. Cancer 3: 32PubMedCrossRefGoogle Scholar
  14. 14.
    Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13: 818–829PubMedCrossRefGoogle Scholar
  15. 15.
    Gustafson DH, Fryback D, Rose J, et al (1981) A decision theoretic methodology for severity index development. Med Decis Making 6: 27–35CrossRefGoogle Scholar
  16. 16.
    Kenney RA (1982) Physiology of Aging: A Synopsis. Year Book Medical Publishers Inc, ChicagoGoogle Scholar
  17. 17.
    Wagner DP, Knaus WA, Draper EA (1983) Statistical validation of a severity of illness measure. Am J Public Health 73: 878–884PubMedCrossRefGoogle Scholar
  18. 18.
    Rowan KM, Kerr JH, Major E, McPherson K, Short A, Vessey MP (1993) Intensive Care Society’s APACHE II study in Britain and Ireland-II: Outcome comparisons of intensive care units after adjustment for case mix by the American APACHE II method. Br Med J 307: 977–981CrossRefGoogle Scholar
  19. 19.
    Horst HM, Obeid FN, Sorensen VJ, Bivins BA (1986) Factors influencing survival of elderly trauma patients. Crit Care Med 14: 681–684PubMedCrossRefGoogle Scholar
  20. 20.
    Cerra FB, Negro F, Abrams J (1990) APACHE II score does not predict multiple organ failure or mortality in postoperative surgical patients. Arch Surg 125: 519–522PubMedCrossRefGoogle Scholar
  21. 21.
    Moreau R, Soupison T, Vauquelin P, Derrida S, Beaucour H, Sicot C (1989) Comparison of two simplified severity scores ( SAPS and APACHE II) for patients with acute myocardial infarction. Crit Care Med 17: 409–413PubMedCrossRefGoogle Scholar
  22. 22.
    Fedullo AJ, Swinburne AJ, Wahl GW, Bixby KR (1988) APACHE II score and mortality in respiratory failure due to cardiogenic pulmonary edema. Crit Care Med 16: 1218–1221PubMedCrossRefGoogle Scholar
  23. 23.
    Wehler M, Kokoska J, Reulbach U, Hahn EG, Strauss R (2001) Short-term prognosis in critically ill patients with cirrhosis assessed by prognostic scoring systems. Hepatology 34: 255–261PubMedCrossRefGoogle Scholar
  24. 24.
    Hazelgrove JF, Price C, Pappachan VJ, Smith GB (2001) Multicenter study of obstetric admissions to 14 intensive care units in southern England. Crit Care Med 29: 770–775PubMedCrossRefGoogle Scholar
  25. 25.
    Schwilk B, Wiedeck H, Stein B, Reinelt H, Treiber H, Bothner U (1997) Epidemiology of acute renal failure and outcome of haemodiafiltration in intensive care. Intensive Care Med 23: 1204–1211PubMedCrossRefGoogle Scholar
  26. 26.
    Hopefl AW, Taaffe CL, Herrmann VM (1989) Failure of APACHE II alone as a predictor of mortality in patients receiving total parenteral nutrition. Crit Care Med 17: 414–417PubMedCrossRefGoogle Scholar
  27. 27.
    Chu DY (1993) Predicting survival in AIDS patients with respiratory failure. Application of the APACHE II scoring system. Crit Care Clin 9: 89–105PubMedGoogle Scholar
  28. 28.
    Eapen CE, Thomas K, Cherian AM, Jeyaseelan L, Mathai D, John G (1997) Predictors of mortality in a medical intensive care unit. Natl Med J India 10: 270–272PubMedGoogle Scholar
  29. 29.
    Lemeshow S, Teres D, Pastides H, Avrunin JS, Steingrub JS (1985) A method for predicting survival and mortality of ICU patients using objectively derived weights. Crit Care Med 13: 519–525PubMedCrossRefGoogle Scholar
  30. 30.
    Kleinbaum DG, Kupper LL, Morgenstern H (1982) Epidemiological Research. Principles and Quantitative Methods. Lifetime Learning Publications, Belmont, pp 419–491Google Scholar
  31. 31.
    Teres D, Brown RB, Lemeshow S (1982) Predicting mortality of intensive care unit patients. The importance of coma. Crit Care Med 10: 86–95PubMedCrossRefGoogle Scholar
  32. 32.
    Lemeshow S, Teres D, Avrunin JS, Gage RW (1988) Refining intensive care unit outcome prediction by using changing probabilities of mortality. Crit Care Med 16: 470–477PubMedCrossRefGoogle Scholar
  33. 33.
    Chang RW, Jacobs S, Lee B (1988) Predicting outcome among intensive care unit patients using computerised trend analysis of daily Apache II scores corrected for organ system failure. Intensive Care Med 14: 558–566PubMedCrossRefGoogle Scholar
  34. 34.
    Chang RW, Jacobs S, Lee B, Pace N (1988) Predicting deaths among intensive care unit patients. Crit Care Med 16: 34–42PubMedCrossRefGoogle Scholar
  35. 35.
    Atkinson S, Bihari D, Smithies M, Daly K, Mason R, McColl I (1994) Identification of futility in intensive care. Lancet 344: 1203–1206PubMedCrossRefGoogle Scholar
  36. 36.
    Rogers J, Fuller HD (1994) Use of daily Acute Physiology and Chronic Health Evaluation ( APACHE) II scores to predict individual patient survival rate. Crit Care Med 22: 1402–1405PubMedCrossRefGoogle Scholar
  37. 37.
    Knaus WA, Wagner DP, Draper EA, et al (1991) The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest 100: 1619–1636PubMedCrossRefGoogle Scholar
  38. 38.
    Becker RB, Zimmerman JE, Knaus WA, et al (1995) The use of APACHE III to evaluate ICU length of stay, resource use, and mortality after coronary artery by-pass surgery. J Cardiovasc Surg (Torino) 36: 1–11Google Scholar
  39. 39.
    Durrleman S, Simon R (1989) Flexible regression models with cubic splines. Stat Med 8: 551–561PubMedCrossRefGoogle Scholar
  40. 40.
    Lemeshow S, Teres D, Klar J, Avrunin JS, Gehlbach SH, Rapoport J (1993) Mortality Probability Models ( MPM II) based on an international cohort of intensive care unit patients. JAMA 270: 2478–2486PubMedCrossRefGoogle Scholar
  41. 41.
    Daley J (1994) Validity of risk-adjustment methods. In: Iezzoni LI (ed) Risk Adjustment for Measuring Health Care Outcomes. Health Administration Press, Ann Arbor, pp 239–262Google Scholar
  42. 42.
    Kruse JA, Thill-Baharozian MC, Carlson RW (1988) Comparison of clinical assessment with APACHE II for predicting mortality risk in patients admitted to a medical intensive care unit. JAMA 260: 1739–1742PubMedCrossRefGoogle Scholar
  43. 43.
    Brannen AL, 2nd, Godfrey LJ, Goetter WE (1989) Prediction of outcome from critical illness. A comparison of clinical judgment with a prediction rule. Arch Intern Med 149: 1083–1086PubMedCrossRefGoogle Scholar
  44. 44.
    McClish DK, Powell SH (1989) How well can physicians estimate mortality in a medical intensive care unit? Med Decis Making 9: 125–132PubMedCrossRefGoogle Scholar
  45. 45.
    Poses RM, Bekes C, Winkler RL, Scott WE, Copare FJ (1990) Are two (inexperienced) heads better than one (experienced) head? Averaging house officers’ prognostic judgments for critically ill patients. Arch Intern Med 150: 1874–1878PubMedCrossRefGoogle Scholar
  46. 46.
    Beck DH, Taylor BL, Millar B, Smith GB (1997) Prediction of outcome from intensive care: a prospective cohort study comparing Acute Physiology and Chronic Health Evaluation II and III prognostic systems in a United Kingdom intensive care unit. Crit Care Med 25: 915CrossRefGoogle Scholar
  47. 47.
    Pappachan JV, Millar B, Bennett ED, Smith GB (1999) Comparison of outcome from intensive care admission after adjustment for case mix by the APACHE III prognostic system. Chest 115: 802–810PubMedCrossRefGoogle Scholar
  48. 48.
    Livingston BM, MacKirdy FN, Howie JC, Jones R, Norrie JD (2000) Assessment of the performance of five intensive care scoring models within a large Scottish database. Crit Care Med 28: 1820–1827PubMedCrossRefGoogle Scholar
  49. 49.
    Rivera-Fernandez R, Vazquez-Mata G, Bravo M, et al (1998) The Apache III prognostic system: customized mortality predictions for Spanish ICU patients. Intensive Care Med 24: 574–581PubMedCrossRefGoogle Scholar
  50. 50.
    Bastos PG, Sun X, Wagner DP, Knaus WA, Zimmerman JE (1996) Application of the APACHE III prognostic system in Brazilian intensive care units: a prospective multicenter study. Intensive Care Med 22: 564–570PubMedCrossRefGoogle Scholar
  51. 51.
    Zimmerman JE, Wagner DP, Draper EA, Wright L, Alzola C, Knaus WA (1998) Evaluation of acute physiology and chronic health evaluation III predictions of hospital mortality in an independent database. Crit Care Med 26: 1317–1326PubMedCrossRefGoogle Scholar
  52. 52.
    Sirio CA, Shepardson LB, Rotondi AJ, et al (1999) Community-wide assessment of intensive care outcomes using a physiologically based prognostic measure: implications for critical care delivery from Cleveland Health Quality Choice. Chest 115: 793–801PubMedCrossRefGoogle Scholar
  53. 53.
    Le Gall JR, Lemeshow S, Saulnier F (1993) A new Simplified Acute Physiology Score ( SAPS II) based on a European/North American multicenter study. JAMA 270: 2957–2963PubMedCrossRefGoogle Scholar
  54. 54.
    Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74: 829–836CrossRefGoogle Scholar
  55. 55.
    Bahloul F, Le Gall JR, Loirat P, Alperovitch A, Patois E (1988) [Prognostic factors in resuscitation]. Presse Med 17: 1741–1744Google Scholar
  56. 56.
    Auriant I, Vinatier I, Thaler F, Tourneur M, Loirat P (1998) Simplified acute physiology score II for measuring severity of illness in intermediate care units. Crit Care Med 26: 1368–1371PubMedCrossRefGoogle Scholar
  57. 57.
    Capuzzo M, Valpondi V, Sgarbi A, et al (2000) Validation of severity scoring systems SAPS II and APACHE II in a single-center population. Intensive Care Med 26: 1779–1785PubMedCrossRefGoogle Scholar
  58. 58.
    Livingston BM, Mackenzie SJ, MacKirdy FN, Howie JC (2000) Should the pre-sedation Glasgow Coma Scale value be used when calculating Acute Physiology and Chronic Health Evaluation scores for sedated patients? Scottish Intensive Care Society Audit Group. Crit Care Med 28: 389–394PubMedCrossRefGoogle Scholar
  59. 59.
    Apolone G, Bertolini G, D’Amico R, et al (1996) The performance of SAPS II in a cohort of patients admitted to 99 Italian ICUs: results from GiViTI. Gruppo Italiano per la Valutazione degli interventi in Terapia Intensiva. Intensive Care Med 22: 1368–1378PubMedCrossRefGoogle Scholar
  60. 60.
    Moreno R, Morais P (1997) Outcome prediction in intensive care: results of a prospective, multicentre, Portuguese study. Intensive Care Med 23: 177–186PubMedCrossRefGoogle Scholar
  61. 61.
    Metnitz PG, Valentin A, Vesely H, et al (1999) Prognostic performance and customization of the SAPS II: results of a multicenter Austrian study. Simplified Acute Physiology Score. Intensive Care Med 25: 192–197PubMedCrossRefGoogle Scholar
  62. 62.
    Moreno R, Miranda DR, Fidler V, Van Schilfgaarde R (1998) Evaluation of two outcome prediction models on an independent database. Crit Care Med 26: 50–61PubMedCrossRefGoogle Scholar
  63. 63.
    Sikka P, Jaafar WM, Bozkanat E, El-Solh AA (2000) A comparison of severity of illness scoring systems for elderly patients with severe pneumonia. Intensive Care Med 26: 1803–1810PubMedCrossRefGoogle Scholar
  64. 64.
    Fiaccadori E, Maggiore U, Lombardi M, Leonardi S, Rotelli C, Borghetti A (2000) Predicting patient outcome from acute renal failure comparing three general severity of illness scoring systems. Kidney Int 58: 283–292PubMedCrossRefGoogle Scholar
  65. 65.
    Patel PA, Grant BJ (1999) Application of mortality prediction systems to individual intensive care units. Intensive Care Med 25: 977–982PubMedCrossRefGoogle Scholar
  66. 66.
    Tan IK (1998) APACHE II and SAPS II are poorly calibrated in a Hong Kong intensive care unit. Ann Acad Med Singapore 27: 318–322PubMedGoogle Scholar
  67. 67.
    Nouira S, Belghith M, Elatrous S, et al (1998) Predictive value of severity scoring systems: comparison of four models in Tunisian adult intensive care units. Crit Care Med 26: 852–859PubMedCrossRefGoogle Scholar
  68. 68.
    Hadorn DC, Keeler EB, Rogers WH, Brook RH (1993) Assessing the Performance of Mortality Prediction Models. RAND, Santa MonicaGoogle Scholar
  69. 69.
    Lemeshow S, Klar J, Teres D, et al (1994) Mortality probability models for patients in the intensive care unit for 48 or 72 hours: a prospective, multicenter study. Crit Care Med 22: 1351–1358PubMedCrossRefGoogle Scholar
  70. 70.
    Wagner DP, Knaus WA, Harrell FE, Zimmerman JE, Watts C (1994) Daily prognostic estimates for critically ill adults in intensive care units: results from a prospective, multicenter, inception cohort analysis. Crit Care Med 22: 1359–1372PubMedCrossRefGoogle Scholar
  71. 71.
    Miller RG (1974) The jackknife–A review. Biometrika 61: 1–15Google Scholar
  72. 72.
    Fry DE, Pearlstein L, Fulton RL, Polk HC, Jr (1980) Multiple system organ failure. The role of uncontrolled infection. Arch Surg 115: 136–140PubMedCrossRefGoogle Scholar
  73. 73.
    Stevens LE (1983) Gauging the severity of surgical sepsis. Arch Surg 118: 1190–1192PubMedCrossRefGoogle Scholar
  74. 74.
    Marshall JC, Christou NV, Horn R, Meakins JL (1988) The microbiology of multiple organ failure. The proximal gastrointestinal tract as an occult reservoir of pathogens. Arch Surg 123: 309–315Google Scholar
  75. 75.
    Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) Prognosis in acute organ-system failure. Ann Surg 202: 685–693PubMedCrossRefGoogle Scholar
  76. 76.
    Fagon JY, Chastre J, Novara A, Medioni P, Gibert C (1993) Characterization of intensive care unit patients using a model based on the presence or absence of organ dysfunctions and/or infection: the ODIN model. Intensive Care Med 19: 137–144PubMedCrossRefGoogle Scholar
  77. 77.
    Hebert PC, Drummond AJ, Singer J, Bernard GR, Russell JA (1993) A simple multiple system organ failure scoring system predicts mortality of patients who have sepsis syndrome. Chest 104: 230–235PubMedCrossRefGoogle Scholar
  78. 78.
    Marshall JC, Cook DJ, Christou NV, Bernard GR, Sprung CL, Sibbald WJ (1995) Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit Care Med 23: 1638–1652PubMedCrossRefGoogle Scholar
  79. 79.
    Jacobs S, Zuleika M, Mphansa T (1999) The Multiple Organ Dysfunction Score as a descriptor of patient outcome in septic shock compared with two other scoring systems. Crit Care Med 27: 741–744PubMedCrossRefGoogle Scholar
  80. 80.
    Cook R, Cook D, Tilley J, Lee K, Marshall J (2001) Multiple organ dysfunction: baseline and serial component scores. Crit Care Med 29: 2046–2050PubMedCrossRefGoogle Scholar
  81. 81.
    Le Gall JR, Klar J, Lemeshow S, et al (1996) The Logistic Organ Dysfunction system. A new way to assess organ dysfunction in the intensive care unit. ICU Scoring Group. JAMA 276: 802–810PubMedCrossRefGoogle Scholar
  82. 82.
    Metnitz PG, Lang T, Valentin A, Steltzer H, Krenn CG, Le Gall JR (2001) Evaluation of the logistic organ dysfunction system for the assessment of organ dysfunction and mortality in critically ill patients. Intensive Care Med 27: 992–998PubMedCrossRefGoogle Scholar
  83. 83.
    Vincent JL, Moreno R, Takala J, et al (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis- Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22: 707–710PubMedCrossRefGoogle Scholar
  84. 84.
    Vincent JL, de Mendonca A, Cantraine F, et al (1998) Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit Care Med 26: 1793–1800PubMedCrossRefGoogle Scholar
  85. 85.
    Antonelli M, Moreno R, Vincent JL, et al (1999) Application of SOFA score to trauma patients. Sequential Organ Failure Assessment. Intensive Care Med 25: 389–394PubMedCrossRefGoogle Scholar
  86. 86.
    Moreno R, Vincent JL, Matos R, et al (1999) The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicentre study. Working Group on Sepsis related Problems of the ESICM. Intensive Care Med 25: 686–696PubMedCrossRefGoogle Scholar
  87. 87.
    de Mendonca A, Vincent JL, Suter PM, et al (2000) Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score. Intensive Care Med 26: 915–921PubMedCrossRefGoogle Scholar
  88. 88.
    Hantke M, Holzer K, Thone S, Schmandra T, Hanisch E (2000) [The SOFA score in evaluating septic illnesses. Correlations with the MOD and APACHE II score]. Chirurg 71: 1270–1276PubMedCrossRefGoogle Scholar
  89. 89.
    Janssens U, Graf C, Graf J, et al (2000) Evaluation of the SOFA score: a single-center experience of a medical intensive care unit in 303 consecutive patients with predominantly cardiovascular disorders. Sequential Organ Failure Assessment. Intensive Care Med 26: 1037–1045PubMedCrossRefGoogle Scholar
  90. 90.
    Oda S, Hirasawa H, Sugai T, et al (2000) Comparison of Sepsis-related Organ Failure Assessment (SOFA) score and CIS (cellular injury score) for scoring of severity for patients with multiple organ dysfunction syndrome ( MODS ). Intensive Care Med 26: 1786–1793PubMedCrossRefGoogle Scholar
  91. 91.
    Ferreira FL, Bota DP, Bross A, Melot C, Vincent JL (2001) Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA 286: 1754–1758PubMedCrossRefGoogle Scholar
  92. 92.
    Moreno R, Miranda DR, Matos R, Fevereiro T (2001) Mortality after discharge from intensive care: the impact of organ system failure and nursing workload use at discharge. Intensive Care Med 27: 999–1004PubMedCrossRefGoogle Scholar
  93. 93.
    Timsit JF, Fosse JP, Troche G, et al (2001) Accuracy of a composite score using daily SAPS II and LOD scores for predicting hospital mortality in ICU patients hospitalized for more than 72 h. Intensive Care Med 27: 1012–1021PubMedCrossRefGoogle Scholar
  94. 94.
    Sivak ED, Rogers MA (1999) Assessing quality of care using in-hospital mortality: does it yield informed choices? Chest 115: 613–614PubMedCrossRefGoogle Scholar
  95. 95.
    Burton TM (1999) Examining table: Operation that rated hospitals was success, but the patience died. Cleveland Clinic found fault with program of CEOs, whose ardor faded, too. Low grades spurred reforms. Wall Street Journal, New York, AlGoogle Scholar
  96. 96.
    Hosmer DW, Lemeshow S (1989) Applied Logistic regression. Wiley and Sons, New York, pp 140–145Google Scholar
  97. 97.
    Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic ( ROC) curve. Radiology 143: 29–36PubMedGoogle Scholar
  98. 98.
    Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148: 839–843PubMedGoogle Scholar
  99. 99.
    Angus DC, Pinsky MR (1997) Risk prediction: judging the judges. Intensive Care Med 23: 363–365PubMedCrossRefGoogle Scholar
  100. 100.
    Brazier JE, Harper R, Jones NM, et al (1992) Validating the SF-36 health survey questionnaire: new outcome measure for primary care. Br Med J 305: 160–164CrossRefGoogle Scholar
  101. 101.
    Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1986) An evaluation of outcome from intensive care in major medical centers. Ann Intern Med 104: 410–418PubMedCrossRefGoogle Scholar
  102. 102.
    Boyd O, Grounds RM (1993) Physiological scoring systems and audit. Lancet 341: 1573 1574PubMedCrossRefGoogle Scholar
  103. 103.
    Zimmerman JE, Shortell SM, Knaus WA, et al (1993) Value and cost of teaching hospitals: a prospective, multicenter, inception cohort study. Crit Care Med 21: 1432–1442PubMedCrossRefGoogle Scholar
  104. 104.
    Zimmerman JE, Shortell SM, Rousseau DM, et al (1993) Improving intensive care: observations based on organizational case studies in nine intensive care units: a prospective, multicenter study. Crit Care Med 21: 1443–1451PubMedCrossRefGoogle Scholar
  105. 105.
    Boyd O, Grounds M (1994) Can standardized mortality ratio be used to compare quality of intensive care unit performance? Crit Care Med 22: 1706–1709PubMedGoogle Scholar
  106. 106.
    Goldhill DR, Withington PS (1996) Mortality predicted by APACHE II. The effect of changes in physiological values and post-ICU hospital mortality. Anaesthesia 51: 719–723PubMedGoogle Scholar
  107. 107.
    Bosman RJ, Oudemane van Straaten HM, Zandstra DF (1998) The use of intensive care information systems alters outcome prediction. Intensive Care Med 24: 953–958PubMedCrossRefGoogle Scholar
  108. 108.
    Suistomaa M, Kari A, Ruokonen E, Takala J (2000) Sampling rate causes bias in APACHE II and SAPS II scores. Intensive Care Med 26: 1773–1778PubMedCrossRefGoogle Scholar
  109. 109.
    Teasdale G, Jennett B (1974) Assessment of coma and impaired consciousness. A practical scale. Lancet 2: 81–84PubMedCrossRefGoogle Scholar
  110. 110.
    Chen LM, Martin CM, Morrison TL, Sibbald WJ (1999) Interobserver variability in data collection of the APACHE II score in teaching and community hospitals. Crit Care Med 27: 1999–2004PubMedCrossRefGoogle Scholar
  111. 111.
    Cho DY, Wang YC (1997) Comparison of the APACHE III, APACHE II and Glasgow Coma Scale in acute head injury for prediction of mortality and functional outcome. Intensive Care Med 23: 77–84PubMedCrossRefGoogle Scholar
  112. 112.
    Grmec S, Gasparovic V (2001) Comparison of APACHE II, MEES and Glasgow Coma Scale in patients with nontraumatic coma for prediction of mortality. Acute Physiology and Chronic Health Evaluation. Mainz Emergency Evaluation System. Crit Care 5: 19–23PubMedCrossRefGoogle Scholar
  113. 113.
    Bion JF, Edlin SA, Ramsay G, McCabe S, Ledingham IM (1985) Validation of a prognostic score in critically ill patients undergoing transport. Br Med J 291: 432–434CrossRefGoogle Scholar
  114. 114.
    Dragsted L, Jorgensen J, Jensen NH, et al (1989) Interhospital comparisons of patient outcome from intensive care: importance of lead-time bias. Crit Care Med 17: 418–422PubMedCrossRefGoogle Scholar
  115. 115.
    Tunnell RD, Millar BW, Smith GB (1998) The effect of lead time bias on severity of illness scoring, mortality prediction and standardised mortality ratio in intensive care–a pilot study. Anaesthesia 53: 1045–1053PubMedCrossRefGoogle Scholar
  116. 116.
    Angus DC (2000) Scoring system fatigue…and the search for a way forward. Crit Care Med 28: 2145–2146PubMedCrossRefGoogle Scholar
  117. 117.
    Moreno R, Matos R (2001) Outcome prediction in intensive care. Solving the paradox. Intensive Care Med 27: 962–964PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • J. A. S. Ball
  • J. W. Redman
  • R. M. Grounds

There are no affiliations available

Personalised recommendations