Immunomodulatory Treatment of Severe Acute Pancreatitis

  • T. Dugernier
  • M. S. Reynaert
  • P. F. Laterre


Severe acute pancreatitis is characterized by multiple-system organ failure (MOF) that emerges early after onset of disease, and local complications, in particular pancreatic infection, that usually supervene later in the course of the attack.


Tumor Necrosis Factor Acute Pancreatitis Acinar Cell Severe Acute Pancreatitis Activate Oxygen Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beger HG, Bittner R, Block S, Büchler M (1986) Bacterial contamination of pancreatic necrosis. A prospective clinical study. Gastroenterology 91: 433–438Google Scholar
  2. 2.
    Rinderknecht H (1988) Fatal pancreatitis, a consequence of excessive leukocyte stimulation? Int J Pancreatol 3: 105–112PubMedGoogle Scholar
  3. 3.
    Büchler M, Malfertheiner P, Uhl W, et al (1993) Gabexate mesilate in human acute pancreatitis. Gastroenterology 104: 1165–1170PubMedGoogle Scholar
  4. 4.
    Norman J, Fink G, Denham W, et al (1997) Tissue specific cytokine production during experimental acute pancreatitis: a probable mechanism for distant organ dysfunction. Dig Dis Sci 42: 1783–1788PubMedCrossRefGoogle Scholar
  5. 5.
    Fink GW, Norman J (1996) Intrapancreatic interleukin 1 gene expression by specific leukocyte populations during acute pancreatitis. J Surg Res 63: 369–373PubMedCrossRefGoogle Scholar
  6. 6.
    Grewal HP, Kotb M, Mohey El din A, et al (1994) Induction of tumor necrosis factor in severe acute pancreatitis and its subsequent reduction after hepatic passage. Surgery 115: 213–221PubMedGoogle Scholar
  7. 7.
    Werner J, Dragotakes S, Fernandez-del Castillo C, et al (1998) Technetium-99m-labeled white blood cells: a new method to define the local and systemic role of leukocytes in acute experimental pancreatitis. Ann Surg 227: 86–94PubMedCrossRefGoogle Scholar
  8. 8.
    Gukovskaya AS, Gukovsky I, Zaninovic V, Song M, Sandoval D, Gukovsky S (1997) Pancreatic acinar cells produce, release and respond to tumor necrosis factor-alpha. Role in regulating cell death and pancreatitis. J Clin Invest 100: 1853–1862Google Scholar
  9. 9.
    Yang B, Demaine A, Kingsnorth A (2000) Chemokines MCP-1 and RANTES in isolated rat pancreatic acinar cells treated with CCK and ethanol in vitro. Pancreas 21: 22–31PubMedCrossRefGoogle Scholar
  10. 10.
    Sandoval D, Gukovskaya A, Reavey P, et al (1996) The role of neutrophils and platelet-activating factor in mediating experimental pancreatitis. Gastroenterology 111: 1081–1091PubMedCrossRefGoogle Scholar
  11. 11.
    Telek G, Ducroc R, Scoazec J-Y, Pasquier C, Feldmann G, Rozé C (2001) Differential up-regulation of cellular adhesion molecules at the sites of oxidative stress in experimental acute pancreatitis. J Surg Res 96: 56–67PubMedCrossRefGoogle Scholar
  12. 12.
    Osman MO, Kristensen JU, Jacobsen N, et al (1998) A monoclonal anti-interleukin 8 antibody (WS-4) inhibits cytokine response and acute lung injury in experimental severe acute necrotising pancreatitis in rabbits. Gut 43: 232–239PubMedCrossRefGoogle Scholar
  13. 13.
    Denham W, Yang J, Fink G, et al (1998) TNF but not IL-I decreases pancreatic acinar cell survival without affecting exocrine function; a study in the perfused human pancreas. J Surg Res 74: 3–7PubMedCrossRefGoogle Scholar
  14. 14.
    Malaka D, Vasseur S, Bödeker H, et al (2000) Tumor necrosis factor alpha triggers antiapoptotic mechanisms in rat pancreatic cells trough pancreatitis=associated protein I activation. Gastroenterology 119: 816–828CrossRefGoogle Scholar
  15. 15.
    Bathia M, Wallig MA, Hofbauer B, et al (1998) Induction of apoptosis in pancreatic acinar cells reduces the severity of acute pancreatitis. Biochem Biophys Res Corn 19: 476–483Google Scholar
  16. 16.
    Eubanks JW, Sabek 0, Kotb M, et al (1998) Acute pancreatitis induces cytokine production in endotoxin-resistant mice. Ann Surg 227: 904–911PubMedCrossRefGoogle Scholar
  17. 17.
    Gukovsky I, Gukovskaya A, Blinman T, Zaninovic V, Pandol S (1998) Early NF-KB activation is associated with hormone-induced pancreatitis. Am J Physiol 275: G1402–G1414PubMedGoogle Scholar
  18. 18.
    Tsai K, Wang SS, Chen TS, et al (1998) Oxidative stress: an important phenomenon with pathogenetic significance in the progression of acute pancreatitis. Gut 42: 850–855PubMedCrossRefGoogle Scholar
  19. 19.
    Lundberg A, Eubanks J, Henry J, et al (2000) Trypsin stimulates production of cytokines from peritoneal macrophages in vitro and in vivo. Pancreas 21: 41–51PubMedCrossRefGoogle Scholar
  20. 20.
    Jaffray C, Mendez C, Denham W, Carter G, Norman J (2000) Specific pancreatic enzymes activate macrophages to produce tumor necrosis factor-alpha: role of nuclear factor Kappa B and inhibitory Kappa B proteins. J Gastrointest Surg 4: 370–378PubMedCrossRefGoogle Scholar
  21. 21.
    Jaffray C, Yang J, Norman J (2000) Elastase mimics pancreatitis-induced hepatic injury via inflammatory mediators. J Surg Res 90: 95–101PubMedCrossRefGoogle Scholar
  22. 22.
    Jaffray C, Yang J, Carter G, Mendez C, Norman J (2000) Pancreatic elastase activates pulmonary nuclear factor kappa B and inhibitory kappa B, mimicking pancreatitis-associated adult respiratory distress syndrome. Surgery 128: 225–231PubMedCrossRefGoogle Scholar
  23. 23.
    Denham W, Yang J, Norman J (1997) Evidence for an unknown component of pancreatic ascites that induces adult respiratory distress syndrome through an interleukin-1 and tumor necrosis factor-dependent mechanism. Surgery 122: 295–302PubMedCrossRefGoogle Scholar
  24. 24.
    Gloor B, Blinman T, Rigberg D, et al (2000) Kupffer cell blockade reduces hepatic and systemic cytokine levels and lung injury in hemorrhagic pancreatitis in rats. Pancreas 21: 414420Google Scholar
  25. 25.
    Norman J, Fink G, Messina J, Carter G, Franz M (1996) Timing of tumor necrosis factor antagonism is critical in determining outcome in murine lethal acute pancreatitis. Surgery 120: 515–521PubMedCrossRefGoogle Scholar
  26. 26.
    Guice KS, Oldham KT, Rezmick DG, Kunkel SL, Ward PA (1991) Anti-tumor necrosis factor antibody augments edema formation in caerulein-induced acute pancreatitis. J Surg Res 51: 495–499PubMedCrossRefGoogle Scholar
  27. 27.
    Denham W, Yang J, Fink G, et al (1997) Gene targeting demonstrates additive detrimental effects of interleukin I and tumor necrosis factor during pancreatitis. Gastroenterology 113: 1741–1746PubMedCrossRefGoogle Scholar
  28. 28.
    Hughes CB, El-Din A, Kotb M, Gaber L, Gaber A (1996) Calcium channel blockade inhibits release of TNF alpha and improves survival in a rat model of acute pancreatitis. Pancreas 13: 22–28PubMedCrossRefGoogle Scholar
  29. 29.
    Yang J, Denham W, Tracey K, et al (1998) The physiologic consequences of macrophage pacification during severe acute pancreatitis. Shock 10: 169–175PubMedCrossRefGoogle Scholar
  30. 30.
    Demols A, Van Laethem J-L, Quertinmont E, et al (1998) N-Acetylcysteine decreases severity of acute pancreatitis in mice. Pancreas 20: 161–169CrossRefGoogle Scholar
  31. 31.
    Imrie CW (1999) The possible role of platelet-activating factor antagonist therapy in the management of severe acute pancreatitis. Bailliere’s Clin Gastroenterol 13: 357–364CrossRefGoogle Scholar
  32. 32.
    Gerard C, Frossard J-L, Bhatia M, et al (1997) Targeted disruption of the B-chemokine receptor CCRI protects against pancreatitis-associated lung injury. J Clin Invest 100: 20222027Google Scholar
  33. 33.
    Frossard JL, Saluja A, Bhagat L, et al (1999) The role of intercellular adhesion molecule 1 and neutrophils in acute pancreatitis and pancreatitis-associated lung injury. Gastroenterology 116: 694–701PubMedCrossRefGoogle Scholar
  34. 34.
    de Beaux AC, Goldie AS, Ross JA, Carter DC, Fearon KC (1996) Serum concentrations of inflammatory mediators related to organ failure in patients with acute pancreatitis. Br J Surg 83: 349–353PubMedCrossRefGoogle Scholar
  35. 35.
    Gross V, Andreesen R, Leser HG, et al (1992) Interleukin-8 and neutrophil activation in acute pancreatitis. Eur J Clin Invest 22: 200–203PubMedCrossRefGoogle Scholar
  36. 36.
    Hietaranta A, Kemppainen E, Puolakkainen P, et al (1999) Extracellular phospholipases A2 in relation to systemic inflammatory response syndrome ( SIRS) and systemic complications in severe acute pancreatitis. Pancreas 18: 385–391Google Scholar
  37. 37.
    Schölmerich J, Schümichen C, Lausen M, et al (1991) Scintigraphic assessment of leukocyte infiltration in acute pancreatitis using technetium-99m-hexamethyl propylene amine oxine as leukocyte label. Dig Dis Sci 36: 65–71PubMedCrossRefGoogle Scholar
  38. 38.
    Hynninen M, Valtonen M, Markkanen H, et al (1999) Interleukin 1 receptor antagonist and E-selectin concentrations: a comparison in patients with severe acute pancreatitis and severe sepsis. J Crit Care 14: 63–68PubMedCrossRefGoogle Scholar
  39. 39.
    Kaufmann P, Smolle K, Brunner G, Demel U, Tilz G, Krejs G (1999) Relation of serial measurements of plasma-soluble intercellular adhesion molecule-1 to severity of acute pancreatitis. Am J Gastroenterol 94: 2412–2416PubMedCrossRefGoogle Scholar
  40. 40.
    de Beaux AC, Ross JA, Maingay JP, Fearon KC, Carter DC (1996) Proinflammatory cytokine release by peripheral blood mononuclear cells from patients with acute pancreatitis. Br J Surg 83: 1071–1075PubMedCrossRefGoogle Scholar
  41. 41.
    Brivet F, Emilie D, Galanaud P, et al (1999). Pro-and anti-inflammatory cytokines during acute severe pancreatitis: an early and sustained response, although unpredictable of death. Crit Care Med 27: 749–755PubMedCrossRefGoogle Scholar
  42. 42.
    Messmann H, Vogt W, Falk W, et al (1998) Interleukins and their antagonists but not TNF and its receptors are released in post-ERP pancreatitis. Europ J Gastroent Hepatol 10: 611617Google Scholar
  43. 43.
    McKay CJ, Gallagher G, Brooks B, Imrie CW, Baxter JN (1996) Increased monocyte cytokine production in association with systemic complications in acute pancreatitis. Br J Surg 83: 919–923PubMedCrossRefGoogle Scholar
  44. 44.
    Montravers P, Chollet-Martin S, Marmuse JP, Gougerot-Picidalo MA, Desmonts JM (1995) Lymphatic release of cytokines during acute lung injury complicating severe pancreatitis. Am J Respir Crit Care Med 152: 1527–1533PubMedCrossRefGoogle Scholar
  45. 45.
    Mayer J, Rau B, Gansauger F, Beger H (2000) Inflammatory mediators in human acute pancreatitis; clinical and pathophysiological implications. Gut 47: 546–552PubMedCrossRefGoogle Scholar
  46. 46.
    Kaufmann P, Tilz G, Lueger A, Demel U (1997) Elevated plasma levels of soluble tumor necrosis factor receptor (sTNFRp60) reflect severity of acute pancreatitis. Intensive Care Med 23: 841–848PubMedCrossRefGoogle Scholar
  47. 47.
    Devière J, Le Moine 0, Van Laethem J-L, et al (2001) Interleukin 10 reduces the incidence of pancreatitis after therapeutic endoscopic retrograde cholangiopancreatography. Gastroenterology 120: 498–505PubMedCrossRefGoogle Scholar
  48. 48.
    Johnson C, Kingsnorth A, Imrie C, et al (2001) Double blind, randomised, placebo controlled study of a platelet activating factor antagonist, lexipafant, in the treatment and prevention of organ failure in predicted severe acute pancreatitis. Gut 48: 62–69PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • T. Dugernier
  • M. S. Reynaert
  • P. F. Laterre

There are no affiliations available

Personalised recommendations