Skip to main content

Assessment of Lung Function in Mechanically Ventilated Patients

  • Chapter
Book cover Intensive Care Medicine
  • 227 Accesses

Abstract

Lung function is often compromised in respiratory failure. Therefore, the management of mechanically ventilated patients is facilitated by knowing the mechanical properties of the patient’s lungs. Monitoring mechanical lung function regularly may help in the diagnosis of adverse events such as onset of pulmonary edema or blockage of the endotracheal tube. Ventilator-induced lung injury (VILI), due to over-stretch of the pulmonary tissues, may be minimized if the relationships between volume, flow and pressure in the lungs are understood and ventilatory parameters are chosen accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mead J, Whittenberger JL (1953) Physical properties of human lungs measured during spontaneous respiration. J Appl Physiol 5: 779–796

    Google Scholar 

  2. Peslin R, Felicio da Silva J, Chabot F, Duvivier C (1992) Respiratory mechanics studied by multiple linear regression in unsedated ventilated patients. Eur Respir J 5: 871–878

    PubMed  CAS  Google Scholar 

  3. Dechman GS, Chartrand DA, Ruiz-Neto RP, Bates JHT (1995) The effect of changing end-expiratory pressure on respiratory system mechanics in open-and closed-chested anesthetized, paralyzed patients. Anesth Analg 81: 279–286

    PubMed  CAS  Google Scholar 

  4. Fahy BG, Barnas GM, Nagle SE, Flowers JL, Njoku MJ, Agarwal M (1996) Effects of Trendelenburg and reverse Trendelenburg postures on lung and chest wall mechanics. J Clin Anesth 8: 236–244

    Article  PubMed  CAS  Google Scholar 

  5. Fredberg JJ, Keefe DH, Glass GM, Castile RG, Franz ID (1984) Alveolar pressure nonhomogeneity during small-amplitude high-frequency oscillation. J Appl Physiol 57: 788–800

    PubMed  CAS  Google Scholar 

  6. Hantos Z, Daroczy B, Suki B, Nagy S, Fredberg JJ (1992) Input impedance and peripheral inhomogeneity of dog lungs. J Appl Physiol 72: 168–178

    Article  PubMed  CAS  Google Scholar 

  7. Otis AB (1986) History of respiratory mechanics. In: Cherniack NS (ed) Handbook of Physiology. The Respiratory System, vol III. Am Physiol Soc, Bethesda, pp 1–12

    Google Scholar 

  8. Fabry B, Guttman J, Eberhard L, Wolff G (1994) Automatic compensation of endotracheal tube resistance in spontaneously breathing patients. Technol Health Care 1: 281–291

    Google Scholar 

  9. Guttman J, Eberhard L, Fabry B, et al (1995) Time constant/volume relationship of passive expiration in mechanically ventilated ARDS patients. Eur Respir J 8: 114–120

    Article  Google Scholar 

  10. Bersten AD (1998) Measurement of overinflation by multiple linear regression analysis in patients with acute lung injury. Eur Respir J 12: 526–532

    Article  PubMed  CAS  Google Scholar 

  11. Salazar E, Knowles JH (1964) An analysis of pressure-volume characteristics of the lungs. J Appl Physiol 19: 97–104

    PubMed  CAS  Google Scholar 

  12. Colebatch HJH, Ng CKY, Nikov N (1979) Use of an exponential function for elastic recoil. J Appl Physiol 46: 387–393

    PubMed  CAS  Google Scholar 

  13. Harris RS, Hess DR, Venegas JG (2000) An objective analysis of the pressure-volume curve in the acute respiratory distress syndrome. Am J Respir Crit Care Med 161: 432–439

    Article  PubMed  CAS  Google Scholar 

  14. Hickling K (1998) The pressure-volume curve is greatly modified by recruitment. Am J Respir Crit Care Med 158: 194–202

    Article  PubMed  CAS  Google Scholar 

  15. Otis AB, McKerrow CB, Bartlett RA, et al (1956) Mechanical factors in distribution of pulmonary ventilation. J Appl Physiol 8: 427–443

    PubMed  CAS  Google Scholar 

  16. Mead J (1969) Contribution of compliance of airways to frequency-dependent behavior of lungs. J Appl Physiol 26: 670–673

    PubMed  CAS  Google Scholar 

  17. Mount LE (1955) The ventilation flow-resistance and compliance of rat lungs. J Physiol (Lond) 127: 157–167

    CAS  Google Scholar 

  18. Similowski T, Bates JHT (1991) Two-compartment modelling of respiratory system mechanics at low frequencies: gas redistribution or tissue rheology? Eur Respir J 4: 353–358

    PubMed  CAS  Google Scholar 

  19. Bates JHT, Ludwig MS, Sly PD, Brown K, Martin JG, Fredberg JJ (1988) Interrupter resistance elucidated by alveolar pressure measurement in open-chest normal dogs. J Appl Physiol 65: 408–414

    PubMed  CAS  Google Scholar 

  20. Fredberg JJ, Ingram RH, Castile RG, Glass GM, Drazen JM (1985) Nonhomogeneity of lung response to inhaled histamine assessed with alveolar capsules. J Appl Physiol 58: 1914–1922

    PubMed  CAS  Google Scholar 

  21. Ludwig MS, Romero PV, Sly PD, Fredberg JJ, Bates JHT (1990) Interpretation of interrupter resistance after histamine-induced constriction in the dog. J Appl Physiol 68: 1651–1656

    PubMed  CAS  Google Scholar 

  22. Rossi A, Gottfried SB, Higgs BD, Zocchi L, Grassino A, Milic-Emili J (1985) Respiratory mechanics in mechanically ventilated patients with respiratory failure. J Appl Physiol 58: 1849–1858

    PubMed  CAS  Google Scholar 

  23. D’Angelo E, Tavola M, Milic-Emili J (2000) Volume and time dependence of respiratory system mechanics in normal anaesthetized paralysed humans. Eur Respir J 16: 665–672

    Article  PubMed  Google Scholar 

  24. Bates JHT, Rossi A, Milic-Emili J (1985) Analysis of the behavior of the respiratory system with constant inspiratory flow. J Appl Physiol 58: 1840–1848

    PubMed  CAS  Google Scholar 

  25. Peslin R, Fredberg JJ (1986) Oscillation mechanics of the respiratory system. In: Cherniack NS (ed) Handbook of Physiology, The Respiratory System, vol III. Am Physiol Soc, Bethesda, pp 145–177

    Google Scholar 

  26. Beraldo PS, Mateus SR, Arujo LM, Horan TA (2000) Forced oscillation technique to detect and monitor tracheal stenosis in a tetraplegic patient. Spinal Cord 38: 445–447

    Article  PubMed  CAS  Google Scholar 

  27. Kaczka D, Ingenito EP, Body SC, et al (2001) Inspiratory lung impedance in COPD: effects of PEEP and immediate impact of lung volume reduction surgery. J Appl Physiol 90: 18331841

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bates, J.H.T. (2002). Assessment of Lung Function in Mechanically Ventilated Patients. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5551-0_52

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5551-0_52

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5553-4

  • Online ISBN: 978-1-4757-5551-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics