Monitoring Left Heart Performance in the Critically Ill

  • J. Poelaert
  • C. Roosens
  • P. Segers

Abstract

Pre-existing ventricular dysfunction in the critically ill patient significantly determines outcome. The importance of this feature has been demonstrated both in septic and in perioperative non-cardiac surgical patients [1, 2]. When admitted to the ICU, patients with extensive hemodynamic deterioration, either due to distributive shock, cardiogenic shock or posttraumatic hypovolemia, should be examined rapidly to correctly assess the main determinants of cardiovascular function. Table 1 summarizes intrinsic and extrinsic determinants governing ventricular function. Rapid decision making will have a major impact on further therapeutic strategies [3, 4]. In this respect, it is of paramount importance to estimate accurately both changing loading conditions and cardiac function. Traditional measures, such as stroke volume, cardiac output, and ejection fraction have proven their validity in clinical practice, although caution is warranted because of their strong load dependency. The load dependency precludes the use of ejection fraction as a parameter in patients with either disturbed preload or afterload. Left ventricular (LV) ejection fraction does not show any prognostic value with respect to outcome prediction in patients with normal systolic LV function in septic shock [5]. With the advent of more powerful and more specific technology, a different framework for evaluating LV performance must be proposed.

Keywords

Right Ventricular Diastolic Dysfunction Tissue Doppler Imaging Myocardial Performance Index Contractile Reserve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vallet B, Chopin C, Curtis S, et al (1993) Prognostic value of the dobutamine test in patients with sepsis syndrome and normal lactate values: a prospective, multicenter study. Crit Care Med 21: 1868–1875PubMedCrossRefGoogle Scholar
  2. 2.
    Mangano D, Browner W, Hollenberg M, London M, Tubau J, Tateo I (1990) Association of perioperative myocardial ischemia with cardiac morbidity and mortality in men undergoing noncardiac surgery. N Engl J Med 323: 1781–1788PubMedCrossRefGoogle Scholar
  3. 3.
    Bergquist BD, Bellows WH, Leung JM (1996) Transesophageal echocardiography in myocardial revascularisation: II. Influence on intraoperative decision making. Anesth Analg 82: 1139–1145PubMedGoogle Scholar
  4. 4.
    Poelaert JI, Trouerbach J, De Buyzere M, Everaert J, Colardyn FA (1995) Evaluation of transesophageal echocardiography as a diagnostic and therapeutic aid in a critical care setting. Chest 107: 774–779PubMedCrossRefGoogle Scholar
  5. 5.
    Jardin F, Fourme T, Page B, et al (1999) Persistent preload defect in severe sepsis despite fluid loading. A longitudinal echocardiographic study in patients with septic shock. Chest 116: 1354–1359PubMedCrossRefGoogle Scholar
  6. 6.
    Braunwald E (1997) Mechanisms of cardiac contraction and relaxation. In: Braunwald E (ed) Heart disease. A Textbook of Cardiovascular Medicine. W.B. Saunders, Philadelphia, pp 360–393Google Scholar
  7. 7.
    Ogletree-Hughes ML, Stull LB, Sweet WE, Smedira NG, McCarthy PM, Moravec CS (2001) Mechanical unloading restores beta-adrenergic responsiveness and reverses receptor down-regulation in the failing human heart. Circulation 104: 881–886PubMedCrossRefGoogle Scholar
  8. 8.
    Mulieri L, Hasenfuss G, Ittleman F, et al (1992) Altered myocardial force-frequency relation in human heart failure. Circulation 85: 1743–1750PubMedCrossRefGoogle Scholar
  9. 9.
    Goldstein J, Tweddell J, Barzilai B, Yagi Y, Jaffe A, Cox J (1992) Importance of left ventricular function and systolic ventricular interaction to the right ventricular performance during acute right heart ischemia. J Am Coll Cardiol 19: 704–711PubMedCrossRefGoogle Scholar
  10. 10.
    Marcus J, Noordegraaf A, Roeleveld R, et al (2001) Impaired left ventricular filling due to right ventricular pressure overload in primary pulmonary hypertension. Chest 119: 1761–1765PubMedCrossRefGoogle Scholar
  11. 11.
    Berger M, Haimowitz A, Van Tosh A, Berdoff R, Goldberg E (1985) Quantitative assessment of pulmonary hypertension in patients with tricuspid regurgitation using continuous wave Doppler ultrasound. J Am Coll Cardiol 6: 359–365PubMedCrossRefGoogle Scholar
  12. 12.
    Bajzer C, Stewart W, Cosgrove D, Azzam S, Arheart K, Klein A (1998) Tricuspid valve surgery and intraoperative echocardiography. J Am Coll Cardiol 32: 1023–1031PubMedCrossRefGoogle Scholar
  13. 13.
    Pathi V, Jones B, Davidson K (1996) Mitral valve disruption following blunt trauma: case report and review of the literature. Eur J Cardiothorac Surg 10: 806–808PubMedCrossRefGoogle Scholar
  14. 14.
    Holubarsch C, Ruf T, Goldstein D, et al (1996) Existence of the Frank-Starling mechanism in the failing human heart. Investigations on the organ, tissue and sarcomere levels. Circulation 94: 683–689PubMedCrossRefGoogle Scholar
  15. 15.
    Mark J (1991) Central venous pressure monitoring: clinical insights beyond the numbers. J Cardiothorac Vasc Anesth 5: 163–173PubMedCrossRefGoogle Scholar
  16. 16.
    Magder S (1998) More respect for the CVP. Intensive Care Med 24: 651–653PubMedCrossRefGoogle Scholar
  17. 17.
    Soliman D, Maslow A, Bokesch P, et al (1998) Transoesphageal echocardiography during scoliosis repair: comparison with CVP monitoring. Can J Anaesth 45: 925–932PubMedCrossRefGoogle Scholar
  18. 18.
    Hansen RM, Viquerat CE, Matthay MA, et al (1986) Poor correlation between pulmonary arterial wedge pressure and left end-diastolic volume after coronary artery bypass graft surgery. Anesthesiology 64: 764–770PubMedCrossRefGoogle Scholar
  19. 19.
    Thys D, Hillel Z, Goldman M, Mindich B, Kaplan J (1987) A comparison of hemodynamic indices derived by invasive monitoring and two-dimensional echocardiography. Anesthesiology 67: 630–634PubMedCrossRefGoogle Scholar
  20. 20.
    Jardin F, Valier B, Beauchet A, Dubourg 0, Bourdarias J (1994) Invasive monitoring combined with two-dimensional echocardiographic study in septic shock. Intensive Care Med 20: 550–554PubMedCrossRefGoogle Scholar
  21. 21.
    Tousignant C, Walsh F, Mazer C (2000) The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg 90: 351–355PubMedGoogle Scholar
  22. 22.
    Swenson JD, Harkin C, Pace NL, Astle K, Bailey P (1996) Transesophageal echocardiography: An objective tool in determining maximum ventricular response to intravenous fluid therapy. Anesth Ana1g 83: 1149–1153Google Scholar
  23. 23.
    Leung JM, Levine EH (1994) Left ventricular end-systolic cavity obliteration as an estimate of intraoperative hypovolemia. Anesthesiology 81: 1102–1109PubMedCrossRefGoogle Scholar
  24. 24.
    Mirsky I, Corin WJ, Murakami T, Grimm J, Hess OM, Kraeyenbuehl HP (1988) Correction for preload in assessment of myocardial contractility in aortic and mitral valve disease. Circulation 87: 68–80CrossRefGoogle Scholar
  25. 25.
    Perel A, Pizov R, Cotev S (1987) Systolic blood pressure variation is a sensitive indicator of hypovolaemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 67: 498502Google Scholar
  26. 26.
    Coriat P, Vrillon M, Perel A, et al (1994) A comparison of systolic blood pressure variations and echocardiographic estimates of end-diastolic left ventricular size in patients after aortic surgery. Anesth Ana1g 78: 46–53Google Scholar
  27. 27.
    Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89: 1313–1321PubMedCrossRefGoogle Scholar
  28. 28.
    Tournadre JP, Allacouchiche B, Cayrel V, Mathion L, Chassard D (2000) Estimation of cardiac preload changes by systolic pressure variation in pigs undergoing pneumoperitoneum. Acta Anaesthesiol Scand 44: 231–235PubMedCrossRefGoogle Scholar
  29. 29.
    Keren G, Sherez J, Megidish R, Levitt B, Laniado S (1985) Pulmonary venous flow pattern–its relationship to cardiac dynamics. Circulation 71: 1105–1112PubMedCrossRefGoogle Scholar
  30. 30.
    Appleton C, Hatle L, Popp R (1988) Relation of transmitral flow velocity patterns to left ventricular diastolic function: new insights from a combined hemodynamic and Doppler echocardiographic study. J Am Coll Cardiol 12: 426–440PubMedCrossRefGoogle Scholar
  31. 31.
    Kuecherer H, Muhiudeen I, Kusumoto F, et al (1990) Estimation of mean left atrial pressure from transesophageal pulsed Doppler echocardiography of pulmonary venous flow. Circulation 82: 1127–1139PubMedCrossRefGoogle Scholar
  32. 32.
    Rossvoll O, Hatle L (1993) Pulmonary venous flow velocities recorded by transthoracic Doppler ultrasound: relation to left ventricular diastolic pressures. J Am Coll Cardiol 21: 1687–1696PubMedCrossRefGoogle Scholar
  33. 33.
    Hoit B, Shao Y, Gabel M, Walsh R (1992) Influence of loading conditions and contractile state on pulmonary venous flow. Validation of Doppler velocimetry. Circulation 86: 651–659Google Scholar
  34. 34.
    Hofmann T, Keck A, van Ingen G, Simic O, Ostermeyer J, Meinertz T (1995) Simultaneous measurement of pulmonary venous flow by intravascular catheter Doppler velocimetry and transesophageal Doppler echocardiography: relation to left atrial pressure and left atrial and left ventricular function. J Am Coll Cardiol 26: 239–249PubMedCrossRefGoogle Scholar
  35. 35.
    Yamamuro A, Yoshida K, Hozumi T, et al (1999) Noninvasive evaluation of pulmonary wedge pressure in patients with acute myocardial infarction by deceleration time of pulmonary venous flow velocity iin diastole. J Am Coll Cardiol 34: 90–94PubMedCrossRefGoogle Scholar
  36. 36.
    Appleton C, Galloway J, Gonzalez M, Gaballa M, Basnight M (1993) Estimation of left ventricular filling pressures using two-dimensional and Doppler echocardiography in adult patients with cardiac disease. Additional value of analyzing left atrial size, left atrial ejection fraction and the difference in duration of pulmonary venous and mitral flow velocity at atrial contraction. J Am Coll Cardiol 22: 1972–1982Google Scholar
  37. 37.
    Kinnaird T, Thompson C, Munt B (2001) The deceleration time of pulmonary venous diastolic flow is more accurate than the pulmonary artery occlusion pressure predicting left atrial pressure. J Am Coll Cardiol 37: 2025–2030PubMedCrossRefGoogle Scholar
  38. 38.
    Hoeft A, Schorn B, Weyland A, et al (1994) Bedside assessment of intravascular volume status in patients undergoing coronary bypass surgery. Anesthesiology 81: 76–86PubMedCrossRefGoogle Scholar
  39. 39.
    Goedje O, Thiel C, Lamm P, et al (1999) Less invasive, continuous hemodynamic monitoring during minimally invasive coronary surgery. Ann Thorac Surg 68: 1532–1536CrossRefGoogle Scholar
  40. 40.
    Sakka S, Rühl C, Pfeiffer U, et al (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26: 180–187PubMedCrossRefGoogle Scholar
  41. 41.
    Hinder F, Poelaert J, Schmidt C, et al (1998) Assessment of cardiovascular volume status by transoesophageal echocardiography and dye dilution during cardiac surgery. Eur J Anaesth 15: 633–640CrossRefGoogle Scholar
  42. 42.
    Goedje O, Seebauer T, Peyerl M, Pfeiffer U, Reichart B (2000) Hemodynamic monitoring by double-indicator dilution technique in patients after orthotopic heart transplantation. Chest 118: 775–781PubMedCrossRefGoogle Scholar
  43. 43.
    Wesseling K, Jansen J, Settels J, Schreuder J (1993) Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol 74: 2566–2573PubMedGoogle Scholar
  44. 44.
    Cheatham M, Nelson L, Chang M, Safcsak K (1998) Right ventricular end-diastolic volume index as a predictor of preload status in patients on positive end-expiratory pressure. Crit Care Med 26: 1801–1805PubMedCrossRefGoogle Scholar
  45. 45.
    Shivalkar B, Van Loon J, Wieland W, et al (1993) Variable effects of explosive or gradual increase of intracranial pressure on myocardial structure and function. Circulation 87: 230–239PubMedCrossRefGoogle Scholar
  46. 46.
    Goddard C, Allard M, Hogg J, Walley K (1996) Myocardial morphometric changes related to decreased contractility after endotoxin. Am J Physiol 270: H1446 - H1452PubMedGoogle Scholar
  47. 47.
    Murray D, Freeman G (1996) Tumor necrosis factor-alpha induces a biphasic effect on myocardial contractility in conscious dogs. Circ Res 78: 154–160PubMedCrossRefGoogle Scholar
  48. 48.
    Kass DA, Maughan WL, Guo ZM, Kono A, Sunagawa K, Sagawa K (1987) Comparative influence of load versus inotropic states on indexes of ventricular contractility: experimetntal and theoretical analysis based on pressure-volume relationships. Circulation 76: 1422–1436PubMedCrossRefGoogle Scholar
  49. 49.
    Sagawa K (1981) The end-systolic pressure-volume relation of the ventricle: definition, modification, and clinical use. Circulation 63: 1223–1227PubMedCrossRefGoogle Scholar
  50. 50.
    Pagel P, Kampine J, Schmeling W, Warltier D (1990) Comparison of end-systolic pressure-length relations and preload recruitable stroke work as indices of myocardial contractility in the conscious and anesthetized, chronically instrumented dog. Anesthesiology 73: 278–290PubMedCrossRefGoogle Scholar
  51. 51.
    Kass D, Grayson R, Marino P (1990) Pressure-volume analysis as a method for quantifying simultaneous drug (amrinone) effects on arterial load and contractile state in vivo. J Am Coll Cardiol 16: 726–732PubMedCrossRefGoogle Scholar
  52. 52.
    Gorcsan J, Gasior T, Mandarino W, Deneault L, Hattler B, Pinsky M (1994) Assessment of the intermediate effects of cardiopulmonary bypass on left ventricular performance by online pressure-area relations. Circulation 89: 180–190PubMedCrossRefGoogle Scholar
  53. 53.
    Glower DD, Spratt JA, Snow ND, et al (1985) Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recuitable stroke work. Circulation 71: 994–1009PubMedCrossRefGoogle Scholar
  54. 54.
    Broka S, Eucher P, Jamart J, et al (1999) Doppler-derived left ventricular rate of pressure rise determination in presence of severe acute mitral regurgitation in pigs. J Am Soc Echocardiogr 12: 827–833PubMedCrossRefGoogle Scholar
  55. 55.
    Rhodes J, Udelson J, Marx G, et al (1993) A new noninvasive method for the estimation of peak dP/dt. Circulation 88: 2693–2699PubMedCrossRefGoogle Scholar
  56. 56.
    Greim C, Roewer N, Meissner C, Bause H, Schulte am Esch J (1995) Estimation of acute left ventricular afterload alterations. A transesophageal echocardiographic evaluation. Anaesthesist 44: 108–115Google Scholar
  57. 57.
    Little W, Cheng C, Mamma M, Igarashi Y, Vinten-Johansen J, Johnston W (1989) Comparison of measures of left ventricular performance derived from pressure-volume loops in conscious dogs. Circulation 80: 1378–1387PubMedCrossRefGoogle Scholar
  58. 58.
    Gorcsan J III, Denault A, Gasior TA, et al (1994) Rapid estimation of left ventricular contractility from end-systolic relations by echocardiographic automated border detection and femoral arterial pressure. Anesthesiology 81: 553–562PubMedCrossRefGoogle Scholar
  59. 59.
    De Hert SG, Rodrigus IE, Haenen LR, De Mulder PA, Gillebert TC (1996) Recovery of systolic and diastolic left ventricular function early after cardiopulmonary bypass. Anesthesiology 85: 1063–1075PubMedCrossRefGoogle Scholar
  60. 60.
    Declerck C, Hillel Z, Shih H, Kuroda M, Connery C, Thys D (1998) A comparison of left ventricular performance indices measured by transesophageal echocardiography with automated border detection. Anesthesiology 89: 341–349PubMedCrossRefGoogle Scholar
  61. 61.
    Kass D, Beyar R, Lankford E, Heard M, Maughan W, Sagawa K (1989) Influence of contractile state on curvilinearity of in situ end-systolic pressure-volume relation. Circulation 79: 167–178PubMedCrossRefGoogle Scholar
  62. 62.
    Baan J, Van Der Velde E (1988) Sensitivity of left ventricular end-systolic pressure-volume relation to type of loading intervention in dogs. Circ Res 62: 1247–1258PubMedCrossRefGoogle Scholar
  63. 63.
    Poortmans G, Schöpfer G, Roosens C, Poelaert J (2000) Transesophageal echocardiographic evaluation of left ventricular function. J Cardiothorac Vasc Anesth 14: 588–598PubMedCrossRefGoogle Scholar
  64. 64.
    Haney M, Johansson G, Häggmark S, Biber B (2001) Heart-lung interactions during positive pressure ventilation: left ventricular pressure-volume momentary response to airway pressure elevation. Acta Anaesthesiol Scand 45: 702–709PubMedCrossRefGoogle Scholar
  65. 65.
    Haney M, Johansson G, Häggmark S, Biber B (2001) Analysis of left ventricular systolic function during elevated external cardiac pressure: an examination of measured transmural left ventricular pressure during pressure-volume analysis. Acta Anaesthesiol Scand 45: 868874Google Scholar
  66. 66.
    Leite-Moreira A, Gillebert T (1994) Nonuniform course of left ventricular pressure fall and its regulation by load and contractile state. Circulation 90: 2481–2491PubMedCrossRefGoogle Scholar
  67. 67.
    Schmidt C, Roosens C, Struys M, et al (1999) Contractility in humans after coronary artery surgery. Echocardiographic assessment with preload-adjusted maximal power. Anesthesiology 91: 58–70PubMedCrossRefGoogle Scholar
  68. 68.
    Hayashi K, Shigemi K, Shishido T, Sugimachi M, Sunagawa K (2000) Single-beat estimation of ventricular end-systolic elastance-effective arterial elastance as an index of ventricular mechanoenergetic performance. Anesthesiology 92: 1769–1776PubMedCrossRefGoogle Scholar
  69. 69.
    Gillebert TC, Leite-Moreira AF, De Hert SG (1997) Relaxation-systolic pressure relation. A load dependent assessment of left ventricular contractility. Circulation 95: 745–752Google Scholar
  70. 70.
    Ishizaka S, Asanoi H, Wada 0, Kameyama T, Inoue H (1995) Loading sequence plays an important role in enhanced laod sensitivity of left ventricular relaxation in conscious dogs with tachycardia-induced cardiomyopathy. Circulation 92: 3560–3567PubMedCrossRefGoogle Scholar
  71. 71.
    Gillebert T, Leite-Moreira A, De Hert S (1997) The hemodynamic manifestation of normal myocardial relaxation. A framework for experimental and clinical evaluation. Acta Cardiologica 52: 223–246Google Scholar
  72. 72.
    Leite-Moreira A, Correia-Pinto J, Gillebert T (1999) Load dependence of left ventricular contraction and relaxation. Effects of caffeine. Basic Res Cardiol 94: 284–293Google Scholar
  73. 73.
    Tan L (1991) Evaluation of cardiac dysfunction, cardiac reserve and inotropic response. Postgrad Med J 67: 510 - S20CrossRefGoogle Scholar
  74. 74.
    Stein P, Sabbah H (1976) Rate of change of ventricular power: An indicator of ventricular performance during ejection. Am Heart J 91: 219–227Google Scholar
  75. 75.
    Yi KD, Downey HF, Bian X, Fu M, Mallet RT (2000) Dobutamine enhances both contractile function and energy reserves in hypoperfused canine right ventricle. Am J Physiol 279: H2975 - H2985Google Scholar
  76. 76.
    Kass DA, Beyar R (1991) Evaluation of contractile state by maximal ventricular power divided by the square of end-diastolic volume. Circulation 84: 1698–1708PubMedCrossRefGoogle Scholar
  77. 77.
    Katz WE, Gasior TA, Quinlan JJ, Gorcsan III J (1993) Transgastric continuous-wave Doppler to determine cardiac output. Am J Cardiol 71: 853–857PubMedCrossRefGoogle Scholar
  78. 78.
    Mandarino W, Pinsky M, Gorcsan J (1998) Assessment of left ventricular contractile state by preload-adjusted maximal power using echocardiographic automated border detection. J Am Coll Cardiol 31: 861–868PubMedCrossRefGoogle Scholar
  79. 79.
    Segers P, Carlier S, Westerhof B, Poelaert J, Verdonck P (2001) Significance du pouvoir hydraulique du VG: étude d’un modèle mathématique. J Cardiologie 13: 3–11Google Scholar
  80. 80.
    Pagel PS, Nijhawan N, Warltier DC (1993) Quantitation of volatile anesthetic-induced depression of myocardial contractility using a single beat index derived from maximal ventricular power. J Cardiothor Vasc Anesth 7: 688–695CrossRefGoogle Scholar
  81. 81.
    Kelly R, Fitchett D (1992) Noninvasive determination of aortic input impedance and external left ventricular power output: a validation and repeatability study of a new technique. J Am Coll Cardiol 20: 952–963PubMedCrossRefGoogle Scholar
  82. 82.
    Tei C (1995) New non-invasive index for combined systolic and diastolic ventricular function. J Cardiol 26: 396–404Google Scholar
  83. 83.
    Tei C, Nishimura R, JB S, Tajik A (1997) Noninvasive Doppler-derived myocardial performance index: correlation with simultaneous measurements of cardiac catheterisation measurements. J Am Soc Echocardiogr 10: 169–178PubMedCrossRefGoogle Scholar
  84. 84.
    Tei C, Dujardin K, Hodge D, Kyle R, Tajik A, Seward J (1996) Doppler index combining systolic and diastolic myocardial performance: clinical value in cardiac amyloidosis. J Am Coll Cardiol 27: 658–664CrossRefGoogle Scholar
  85. 85.
    Weissler A, Harris W, Schoenfeld C (1968) Systolic time intervals in heart failure in man. Circulation 37: 149–159PubMedCrossRefGoogle Scholar
  86. 86.
    Kyriakidis M, Antonopoulos A, Georgiakodis F, et al (1994) Systolic time intervals after phenylephrine administration for early stratification of patients after acute myocardial infarction. Am J Cardiol 73: 6–10PubMedCrossRefGoogle Scholar
  87. 87.
    Poulsen S, Nielsen J, Andersen H (2000) The influence of heart rate on the Doppler-derived myocardial performance index. J Am Soc Echocardiogr 13: 379–84PubMedGoogle Scholar
  88. 88.
    Moller J, Poulsen S, Egstrup K (1999) Effect of preload alterations on a new Doppler echo-cardiographic index of combined systolic and diastolic performance. J Am Soc Echocardiogr 12: 1065–1072PubMedCrossRefGoogle Scholar
  89. 89.
    Eidem B, O’Leary P, Tei C, Seward J (2000) Usefulness of the myocardial performance index for assessing right ventricular function in congenital heart disease. Am J Cardiol 86: 654–658PubMedCrossRefGoogle Scholar
  90. 90.
    Williams R, Ritter S, Tani L, Pagotto L, Minich L (2000) Quantitative assessment of ventricular function in children with single ventricles using Doppler myocardial performance index. Am J Cardiol 86: 1106–1110PubMedCrossRefGoogle Scholar
  91. 91.
    Eidem B, Tei C, O’Leary P, Cetta F, Seward J (1998) Nongeometric quantitative assessment of right and left ventricular function: Myocardial Performance Index in normal children and patients with Ebstein Anomaly. J Soc Echocardiogr 11: 849–856Google Scholar
  92. 92.
    Schmidt C, Berendes E (2001) Myocardial performance before and after sympathectomy. Anesthesiology 96: 95Google Scholar
  93. 93.
    Grossman W (1991) Diastolic dysfunction in congestive heart failure. N Engl J Med 325: 1557–1564PubMedCrossRefGoogle Scholar
  94. 94.
    Pagel P, Grossman W, Haering J, Warltier D (1993) Left ventricular diastolic function in the normal and diseased heart: persepctives for the anesthesiologist (first of two parts). Anesthesiology 79: 836–854PubMedCrossRefGoogle Scholar
  95. 95.
    De Hert S, Vander Linden P, Ten Broecke P, De Mulder P, Rodrigus I, Adriaensen H (2000) Assessment of length-dependent regulation of myocardial function in coronary surgery patients using transmitral flow velocity patterns. Anesthesiology 93: 374–381PubMedCrossRefGoogle Scholar
  96. 96.
    Sutherland G, Stewart M, Groundstroem K, et al (1994) Color Doppler myocardial imaging: a new technique for the assessment of myocardial function. J Am Soc Echocardiogr 7: 441–458PubMedGoogle Scholar
  97. 97.
    Takatsuji H, Mikami T, Urasawa K, et al (1996) A new approach for evaluation of left ventricular diastolic function: spatial and temporal analysis of left ventricular filling flow propagation by color M-mode Doppler echocardiography. J Am Coll Cardiol 27: 365–371PubMedCrossRefGoogle Scholar
  98. 98.
    Sohn DW, Chai IH, Lee DJ, et al (1997) Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventircular diastolic function. J Am Coll Cardiol 30: 474–480PubMedCrossRefGoogle Scholar
  99. 99.
    Oki T, Tabata T, Yamada H, et al (1997) Clinical application of pulsed Doppler tissue imaging for assessing abnormal left ventricular relaxation. Am J Cardiol 79: 921–928PubMedCrossRefGoogle Scholar
  100. 100.
    Oki T, Tabata T, Mishiro Y, et al (1999) Pulsed tissue Doppler imaging of left ventricular systolic and diastolic wall motion velocities to evaluate differences between long and short axes in heatly subjects. J Am Soc Echocardiogr 12: 308–313PubMedCrossRefGoogle Scholar
  101. 101.
    Heimdal A, Stoylen A, Torp H (1998) Real-time strain rate imaging of the left ventricle by ultrasound. J Am Soc Echocardiogr 11: 1013–1019PubMedCrossRefGoogle Scholar
  102. 102.
    Sohn DW, Kim YJ, Chun HG, Park YB, Choi YC (1999) Evaluation of left ventricular diastolic function when mitral E and A waves are completely fused: role of assessing mitral annulus velocity. J Am Soc Echocardiogr 12: 203–208Google Scholar
  103. 103.
    Sohn DW, Kim YL, Lee MM, Park YB, Choi YS, Lee YW (2000) Differentiation between reversible and irreversible restrictive left ventricular filling pattern with the use of mitral annulus velocity. J Am Soc Echocardiogr 13: 891–895PubMedCrossRefGoogle Scholar
  104. 104.
    Sohn DW, Choi YJ, Oh BH, Lee MM, Lee YW (1999) Estimation of left ventricular end-diastolic pressure with the difference in pulmonary venous and mitral A durations is limited when mitral E and A waves are overlapped. J Am Soc Echocardiogr 12: 106–112CrossRefGoogle Scholar
  105. 105.
    Bach D (1996) Quantitative Doppler tissue imaging as a correlated of left ventricular contractility. Int J Cardiac Imag 12: 191–195CrossRefGoogle Scholar
  106. 106.
    Nagueh S, Middleton K, Kopelen H, Zoghibi W, Quinones M (1997) Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 30: 1527–1533PubMedCrossRefGoogle Scholar
  107. 107.
    Nagueh S, Mikati I, Kopelen H, Middleton K, Quinonens M, Zoghbi W (1998) Doppler estimation of left ventricular filling pressure in sinus tachycardia. A new application of tissue Doppler imaging. Circulation 98: 1644–1650PubMedCrossRefGoogle Scholar
  108. 108.
    Robotham J, Takata M, Berman M, Harasawa Y (1991) Ejection fraction revisited. Anesthesiology 74: 172–183PubMedCrossRefGoogle Scholar
  109. 109.
    Tuman K, McCarthy R, Pharm D, March R, Najafi H, Ivankovich A (1992) Morbidity and duration of ICU stay after cardiac surgery: A model for preoperative risk assessment. Chest 102: 36–44PubMedCrossRefGoogle Scholar
  110. 110.
    Tu J, Jaglal S, Naylor D (1995) Multicenter validation of a risk index for mortality, intensive care unit stay, and overall hospital length of stay after cardiac surgery. Circulation 91: 677–684CrossRefGoogle Scholar
  111. 111.
    Higgins T (1998) Quantifying risk and assessing outcome in cardiac surgery. J Cardiothorac Vasc Anesth 12: 330–340PubMedCrossRefGoogle Scholar
  112. 112.
    Gault J, Ross J, Braunwald E (1968) Contractile state of the left ventricle in man. Circ Res 22: 451–463PubMedCrossRefGoogle Scholar
  113. 113.
    Borow KM, Neumann A, Marcus RH, Sarelli P, Lang RM (1992) Effects of simultaneous alterations in preload and afterload measurements of left ventricular contractility in patients with dilated cardiomyopathy: comparisons of ejection phase, isovolumetric and end-systolic force-velocity indexes. J Am Coll Cardiol 20: 787–795PubMedCrossRefGoogle Scholar
  114. 114.
    Jin XY, Pepper JR, Gibson DG (1996) Effects of incoordination on left ventricular force-velocity relation in aortic stenosis. Heart 76: 695–501CrossRefGoogle Scholar
  115. 115.
    Sharir T, Feldman MD, Haber H, et al (1994) Ventricular systolic assessment in patients with dilated cardiomyopathy by preload-adjusted maximal power. Validation and noninvasive application. Circulation 89: 2045–2053PubMedCrossRefGoogle Scholar
  116. 116.
    Marmor A, Raphael T, Marmor M, Blondheim D (1996) Evaluation of contractile reserve by dobutamine echocardiography: noninvasive estimation of the severity of heart failure. Am Heart J 132: 1196–1201CrossRefGoogle Scholar
  117. 117.
    Marmor A, Schneeweiss A (1997) Prognostic value of noninvasively obtained left ventricular contractile reserve in patients with severe heart failure. J Am Coll Cardiol 29: 422–428PubMedCrossRefGoogle Scholar
  118. 118.
    Avramides D, Perakis A, Voudris V, Gezerlis P (2000) Noninvasive assessment of left ventricular systolic function by stress-shortening relation, rate of change of power, preload-adjusted maximal power, and ejection force in idiopathic dilated cardiomyopathy: prognostic implications. J Am Soc Echocardiogr 13: 87–95PubMedGoogle Scholar
  119. 119.
    Gorcsan J, Murali S, Counihan PJ, Mandarino WA, Kormos RL (1996) Right ventricular performance and contractile reserve in patients with severe heart failure. Circulation 94: 3190–3197PubMedCrossRefGoogle Scholar
  120. 120.
    Jamal F, Strotmann J, Weidemann F, et al (2001) Noninvasive quantification of the contractile reserve of stunned myocardium by ultrasonic strain rate and strain. Circulation 104: 1059–1065PubMedCrossRefGoogle Scholar
  121. 121.
    Seeberger M, Cahalan M, Rouine-Rapp K, et al (1997) Acute hypovolemia may cause segmental wall motion abnormalities in the absence of myocardial ischemia. Anesth Analg 85: 1252–1257PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • J. Poelaert
  • C. Roosens
  • P. Segers

There are no affiliations available

Personalised recommendations