Metabolic Effects of Adrenergic Drugs

  • E. Ensinger
  • K. Träger


Vasoactive drugs are widely used in intensive care medicine to restore hemodynamic stability. Therapy can be led by blood pressure and cardiac output, but it can also be extended to regional hemodynamic and integrative parameters such as gastric tonometry or systemic regional oxygen extraction. The drugs used for this purpose are mainly catecholamines or synthetic sympathomimetic drugs. These drugs not only mediate hemodynamic actions, but they also have metabolic effects. They act on receptors that are targets of the sympathetic nervous system. The objective in the use of all these compounds is to improve hemodynamic and metabolic performance in order to avoid a deficit in ATP production and to maintain homeostasis.


Mean Arterial Pressure Glucose Production Muscle Protein Synthesis Adrenergic Agonist Splanchnic Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lefkowitz RJ, Hofman BB, Taylor P (1996) Neurotransmission. In: Hardman JG, Limbird LE (eds) The Pharmacological Basis of Therapeutics, 9th edn., McGraw-Hill, New York, pp 105–139Google Scholar
  2. 2.
    Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve-an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52: 595–638PubMedGoogle Scholar
  3. 3.
    Lands AM, Arnold A, McAuliff JP, Luduena FP, Brown TG (1967) Differentiation of receptor systems activated by sympathomimetic amines. Nature 214: 597–598PubMedCrossRefGoogle Scholar
  4. 4.
    Tuomisto J Männistö P (1985) Neurotransmitter regulation of anterior pituitary hormones. Pharmacol Rev 37: 249–332PubMedGoogle Scholar
  5. 5.
    Chikanza IC (1999) Prolactin and neuroimmunomodulation: in vitro and in vivo observations. Ann N Y Acad Sci 876: 119–130PubMedCrossRefGoogle Scholar
  6. 6.
    Ruffolo RR, Spradlin TA, Pollock GD, Waddell JE, Murphy PJ (1981) Alpha and beta adrenergic effects of the stereoisomers of dobutamine. J Pharmacol Exp Ther 219: 447–452PubMedGoogle Scholar
  7. 7.
    Ruffolo RR Yaden EL (1983) Vascular effects of the stereoisomers of dobutamine. J Pharmacol Exp Ther 224: 46–50PubMedGoogle Scholar
  8. 8.
    MacGregor DA, Prielipp RC, Butterworth JF, James RL, Royster RL (1996) Relative efficacy and potency of beta-adrenoceptor agonists for generating cAMP in human lymphocytes. Chest 109: 194–200PubMedCrossRefGoogle Scholar
  9. 9.
    Brown RA, Dixon J, Farmer JB, et al (1985) Dopexamine: a novel agonist at peripheral dopamine receptors and ß 2-adrenoceptors. Br J Pharmacol 85: 599–608PubMedCrossRefGoogle Scholar
  10. 10.
    Brown RA, Farmer JB, Hall JC, Humphries RG, O’Connor SE, Smith GW (1985) The effects of dopexamine on the cardiovascular system of the dog. Br J Pharmacol 85: 609–619PubMedCrossRefGoogle Scholar
  11. 11.
    De Luigi A, Terreni L, Sironi M, De Simoni MG (1998) The sympathetic nervous system tonically inhibits peripheral interleukin-lbetaand interleukin-6 induction by central lipopolysaccharide. Neuroscience 83: 1245–1250PubMedCrossRefGoogle Scholar
  12. 12.
    Farmer P Pugin J (2000) beta-adrenergic agonists exert their “anti-inflammatory” effects in monocytic cells through the IkappaB/NF-kappaB pathway. Am J Physiol 279:L675–L682Google Scholar
  13. 13.
    Blaak EE, Saris WH, van Baak MA (1993) Adrenoceptor subtypes mediating catecholamine-induced thermogenesis in man. Int J Obes Relat Metab Disord 17 (suppl 3): S78 - S81PubMedGoogle Scholar
  14. 14.
    Nagase I, Yoshida T, Saito M (2001) Up-regulation of uncoupling proteins by ß-adrenergic stimulation in L6 myotubes. FEBS Lett 494: 175–180PubMedCrossRefGoogle Scholar
  15. 15.
    Nedergaard J, Golozoubova V, Matthias A, Asadi A, Jacobsson A, Cannon B (2001) UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochim Biophys Acta 1504: 82–106PubMedCrossRefGoogle Scholar
  16. 16.
    Schiffelers SL, Brouwer EM, Saris WH, van Baak MA (1998) Inhibition of lipolysis reduces betal-adrenoceptor-mediated thermogenesis in man. Metabolism 47: 1462–1467PubMedCrossRefGoogle Scholar
  17. 17.
    Wolfe RR, Herndon DN, Jahoor F, Miyoshi H, Wolfe M (1987) Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 317: 403–408PubMedCrossRefGoogle Scholar
  18. 18.
    Jungas RL, Halperin ML, Brosnan JT (1992) Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans. Physiol Rev 72: 419–448PubMedGoogle Scholar
  19. 19.
    Ensinger H, Weichel T, Lindner KH, Grunert A, Ahnefeld FW, Grunert A (1993) Effects of norepinephrine, epinephrine, and dopamine infusions on oxygen consumption in volunteers. Crit Care Med 21: 1502–1508PubMedCrossRefGoogle Scholar
  20. 20.
    Ensinger H, Weichel T, Lindner KH, Grunert A, Georgieff M (1995) Are the effects of noradrenaline, adrenaline and dopamine infusions on vo2 and metabolism transient? Intensive Care Med 21: 50–56PubMedCrossRefGoogle Scholar
  21. 21.
    Cryer PE (1993) Adrenaline: a physiological metabolic regulatory hormone in humans? Int J Obes Relat Metab Disord 17 (suppl 3): S43 - S46PubMedGoogle Scholar
  22. 22.
    Porte D (1967) A receptor mechanism for the inhibition of insulin release by epinephrine in man. J Clin Invest 46: 86–94PubMedCrossRefGoogle Scholar
  23. 23.
    Nonogaki K (2000) New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 43: 533–549PubMedCrossRefGoogle Scholar
  24. 24.
    Chu CA, Sindelar DK, Igawa K, et al (2000) The direct effects of catecholamines on hepatic glucose production occur via alpha(1)- and beta(2)-receptors in the dog. Am J Physiol 279: E463 - E473Google Scholar
  25. 25.
    Kawai Y, Powell A, Arinze IJ (1986) Adrenergic receptors in human liver plasma membranes: predominance of beta 2- and alpha 1-receptor subtypes. J Clin Endocrinol Metab 62: 827–832PubMedCrossRefGoogle Scholar
  26. 26.
    Ensinger H, Träger K, Geisser W, et al (1994) Glucose and urea production and leucine, ketoisocaproate and alanine fluxes at supraphysiological plasma adrenaline concentrations in volunteers. Intensive Care Med 20: 113–118PubMedCrossRefGoogle Scholar
  27. 27.
    Kusaka M, Ui M (1977) Activation of the Cori cycle by epinephrine. Am J Physiol 232: E145 - E155PubMedGoogle Scholar
  28. 28.
    Sacca L, Vigorito C, Cicala M, Corso G, Sherwin RS (1983) Role of gluconeogenesis in epinephrine-stimulated hepatic glucose production in humans. Am J Physiol 245: E294 - E302PubMedGoogle Scholar
  29. 29.
    Cherrington AD, Fuchs H, Stevenson RW, Williams PE, Alberti KGMM, Steiner KE (1984) Effect of epinephrine on glycogenolysis and gluconeogenesis in conscious overnight-fasted dogs. Am J Physiol 247: E137 - E144PubMedGoogle Scholar
  30. 30.
    Galster AD, Clutter WE, Cryer PE, Collins JA, Bier DM (1981) Epinephrine plasma thresholds for lipolytic effects in man. J Clin Invest 67: 1729–1738PubMedCrossRefGoogle Scholar
  31. 31.
    Matthews DE, Pesola G, Campbell RG (1990) Effect of epinephrine on amino acid and energy metabolism in humans. Am J Physiol 258: E948 - E956PubMedGoogle Scholar
  32. 32.
    Navegantes LC, Resano NM, Migliorini RH, Kettelhut IC (2000) Role of adrenoceptors and cAMP on the catecholamine-induced inhibition of proteolysis in rat skeletal muscle. Am J Physiol 279: E663 - E668Google Scholar
  33. 33.
    Erb JM, Ensinger H, Gaissmaier S, Weichel T, Schricker T, Georgieff M (1995) Oxygen uptake and metabolic changes during infusion of dobutamine in comparison to fenoterol and phenylephrine in volunteers. Clin Intensive Care 6: 159–165Google Scholar
  34. 34.
    Geisser W, Trager K, Hahn A, Georgieff M, Ensinger H (1997) Metabolic and calorigenic effects of dopexamine in healthy volunteers. Crit Care Med 25: 1332–1337PubMedCrossRefGoogle Scholar
  35. 35.
    Kinney JM Elwyn DH (1983) Protein metabolism and injury. Ann Rev Nutr 3: 433–466CrossRefGoogle Scholar
  36. 36.
    Dahn MS, Lange P, Lobdell K, Hans B, Jacobs LA, Mitchell RA (1987) Splanchnic and total body oxygen consumption differences in septic and injured patients. Surgery 101: 69–80PubMedGoogle Scholar
  37. 37.
    Wilmore DW, Goodwin CW, Aulick LH, Powanda MC, Mason AD, Pruitt BA (1980) Effect of injury and infection on visceral metabolism and circulation. Ann Surg 192: 491–504PubMedCrossRefGoogle Scholar
  38. 38.
    Miles JM (1993) Lipid fuel metabolism in health and disease. Curr Opin Gen Surg 78–84Google Scholar
  39. 39.
    Feingold KR, Grunfeld C (1987) Tumor necrosis factor-alpha stimulates hepatic lipogenesis in the rat in vivo. J Clin Invest 80: 184–190PubMedCrossRefGoogle Scholar
  40. 40.
    Bessey PQ, Watters JM, Aoki TT, Wilmore DW (1984) Combined hormonal infusion simulates the metabolic response to injury. Ann Surg 200: 264–280PubMedCrossRefGoogle Scholar
  41. 41.
    Fong YM, Albert JD, Tracey K, et al (1991) The influence of substrate background on the acute metabolic response to epinephrine and cortisol. J Trauma 31: 1467–1476PubMedCrossRefGoogle Scholar
  42. 42.
    Fong Y, Marano MA, Moldawer LL, et al (1990) The acute splanchnic and peripheral tissue metabolic response to endotoxin in humans. J Clin Invest 85: 1896–1904PubMedCrossRefGoogle Scholar
  43. 43.
    Reinelt H, Radermacher P, Fischer G, et al (1997) Effects of a dobutamine-induced increase in splanchnic blood flow on hepatic metabolic activity in patients with septic shock. Anesthesiology 86: 818–824PubMedCrossRefGoogle Scholar
  44. 44.
    Ensinger H, Rantala A, Vogt J, Georgieff M, Takala J (1999) Effect of dobutamine on splanchnic carbohydrate metabolism and amino acid balance after cardiac surgery. Anesthesiology 91: 1587–1595PubMedCrossRefGoogle Scholar
  45. 45.
    Kiefer P, Tugtekin I, Wiedeck H, et al (2001) Effect of dopexamine on hepatic metabolic activity in patients with septic shock. Shock 15: 427–431PubMedCrossRefGoogle Scholar
  46. 46.
    Reinelt H, Radermacher P, Kiefer P, et al (1999) Impact of exogenous beta-adrenergic receptor stimulation on hepatosplanchnic oxygen kinetics and metabolic activity in septic shock. Grit Care Med 27: 325–331CrossRefGoogle Scholar
  47. 47.
    Herndon DN, Hart DW, Wolf SE, Chinkes DL, Wolfe RR (2001) Reversal of catabolism by beta-blockade after severe burns. N Engl J Med 345: 1223–1229PubMedCrossRefGoogle Scholar
  48. 48.
    Wilmore DW, Long JM, Mason AD, Skreen RW, Pruitt BA (1974) Catecholamines: mediator of the hypermetabolic response to thermal injury. Ann Surg 180: 653–668PubMedCrossRefGoogle Scholar
  49. 49.
    Hart DW, Wolf SE, Chinkes DL, et al (2000) Determinants of skeletal muscle catabolism after severe burn. Ann Surg 232: 455–465PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • E. Ensinger
  • K. Träger

There are no affiliations available

Personalised recommendations