The Immunological Effects of Hypertonic Saline

  • S. B. Rizoli
  • O. D. Rotstein
  • W. J. Sibbald

Abstract

Sporadic reports on the use of high salt crystalloid solutions, or hypertonic saline, date back to the beginning of the 20th century. Hypertonic solutions were most often used to correct electrolyte abnormalities, but also to induce peripheral vasodilatation and to transiently increase blood pressure [1]. De Felippe et al. [2] reported the first clinical study with hypertonic saline solution in 1980. This Brazilian study reported that small volumes of hypertonic saline administered to 12 trauma patients in extremis of hemorrhagic shock resulted in a remarkable increase in blood pressure, with nine patients leaving the hospital alive. Curiously, during the following 10 years, a large number of studies and considerable effort focused on trying to understand how hypertonic saline increased blood pressure instead of focusing on why nine out of 12 patients who should have died, survived.

Keywords

Systemic Inflammatory Response Syndrome Hemorrhagic Shock Hypertonic Saline Immunological Effect Hypertonic Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rocha e Silva M (1998) Hypertonic saline resuscitation. Medicina (B Aires) 58: 393–402Google Scholar
  2. 2.
    de Felippe J, Timoner J, Velasco IT, Lopes OU, Rocha E, Silva M Jr (1980) Treatment of refractory hypovolaemic shock by 7.5% sodium chloride injections. Lancet 2: 1002–1004PubMedCrossRefGoogle Scholar
  3. 3.
    Arbabi S, Garcia I, Bauer G, Maier RV (1999) Hypertonic saline induces prostacyclin production via extracellular signal-regulated kinase ( ERK) activation. J Surg Res 83: 141–146Google Scholar
  4. 4.
    Wade CE, Grady JJ, Kramer GC, Younes RN, Gehlsen K, Holcroft JW (1997) Individual patient cohort analysis of the efficacy of hypertonic saline/dextran in patients with traumatic brain injury and hypotension. J Trauma 42: S61–S65PubMedCrossRefGoogle Scholar
  5. 5.
    Schierhout G, Roberts I (1998) Fluid resuscitation with colloid or crystalloid solutions in critically ill patients: a systematic review of randomised trials. Br Med J 316: 961–964CrossRefGoogle Scholar
  6. 6.
    Bickell WH, Wall MJJ, Pepe PE (1994) Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med 331: 1105–1109PubMedCrossRefGoogle Scholar
  7. 7.
    Lang F, Busch GL, Ritter M (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78: 247–306PubMedGoogle Scholar
  8. 8.
    Rizoli SB, Kapus A, Fan J, Li YH, Marshall JC, Rotstein OD (1998) Immunomodulatory effects of hypertonic resuscitation on the development of lung inflammation following hemorrhagic shock. J Immunol 161: 6288–6296PubMedGoogle Scholar
  9. 9.
    Mattox KL, Maningas PA, Moore EE (1991) Prehospital hypertonic saline/dextran infusion for post-traumatic hypotension: the USA multicenter trial. Ann Surg 213: 482–491PubMedCrossRefGoogle Scholar
  10. 10.
    Holcroft JW, Vassar MJ, Turner JE, Derlet RW, Kramer GC (1987) 3% NaC1 and 7.5% NaC1/ dextran 70 in the resuscitation of severely injured patients. Ann Surg 206: 279–288Google Scholar
  11. 11.
    Simma B, Burger R, Falk M, Sacher P, Fanconi S (1998) A prospective, randomized, and controlled study of fluid management in children with severe head injury: lactated Ringer’s solution versus hypertonic saline. Crit Care Med 26: 1265–1270PubMedCrossRefGoogle Scholar
  12. 12.
    Walker PM, Romaschin AD, Davis S, Piovesan J (1999) Lower limb ischemia: phase 1 results of salvage perfusion. J Surg Res 84: 193–198PubMedCrossRefGoogle Scholar
  13. 13.
    Bone RC (1996) Immunologic dissonance: a continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS). Ann Intern Med 125: 680–687PubMedCrossRefGoogle Scholar
  14. 14.
    Aplin AE, Howe A, Alahari SK, Juliano RL (1998) Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol Rev 50: 197–263PubMedGoogle Scholar
  15. 15.
    Rizoli SB, Rotstein OD, Kapus A (1999) Cell volume-dependent regulation of L-selectin shedding in neutrophils. A role for p38 mitogen-activated protein kinase. J Biol Chem 274: 22072–22080PubMedCrossRefGoogle Scholar
  16. 16.
    Rizoli SB, Rotstein OD, Parodo J, Phillips MJ, Kapus A (2000) Hypertonic inhibition of exocytosis in neutrophils: central role for osmotic actin skeleton remodeling. Am J Physiol 279: C619–C633Google Scholar
  17. 17.
    Thiel M, Buessecker F, Eberhardt K, et al (2001) Effects of hypertonic saline on expression of human polymorphonuclear leukocyte adhesion molecules. J Leukoc Biol 70: 261–273PubMedGoogle Scholar
  18. 18.
    Hartl R, Medary MB, Ruge M, Arfors KE, Ghahremani F, Ghajar J (1997) Hypertonic/hyperoncotic saline attenuates microcirculatory disturbances after traumatic brain injury. J Trauma 42: S41–S47PubMedCrossRefGoogle Scholar
  19. 19.
    Oreopoulos GD, Hamilton J, Rizoli SB, et al (2000) In vivo and in vitro modulation of intercellular adhesion molecule (ICAM)-1 expression by hypertonicity. Shock 14: 409–414PubMedCrossRefGoogle Scholar
  20. 20.
    Alam HB, Sun L, Ruff P, Austin B, Burris D, Rhee P (1994) E- and P-selectin expression depends on the resuscitation fluid used in hemorrhaged rats. J Surg Res 2000 94: 145–152Google Scholar
  21. 21.
    Worthen GS, Henson PM, Rosengren S, Downey GP, Hyde DM (1994) Neutrophils increase volume during migration in vivo and in vitro. Am J Respir Cell Mol Biol 10: 1–7PubMedCrossRefGoogle Scholar
  22. 22.
    Junger WG, Hoyt DB, Davis RE, et al (1998) Hypertonicity regulates the function of human neutrophils by modulating chemoattractant receptor signaling and activating mitogen-activated protein kinase p38. J Clin Invest 101: 2768–2779PubMedCrossRefGoogle Scholar
  23. 23.
    Rizoli SB, Kapus A, Parodo J, Fan J, Rotstein OD (1999) Hypertonic immunomodulation is reversible and accompanied by changes in CD1lb expression. J Surg Res 83: 130–135PubMedCrossRefGoogle Scholar
  24. 24.
    Junger WG, Liu FC, Loomis WH, Hoyt DB (1994) Hypertonic saline enhances cellular immune function. Circ Shock 42: 190–196PubMedGoogle Scholar
  25. 25.
    Junger WG, Coimbra R, Liu FC, et al (1997) Hypertonic saline resuscitation: a tool to modulate immune function in trauma patients? Shock 8: 235–241PubMedCrossRefGoogle Scholar
  26. 26.
    Loomis WH, Namiki S, Hoyt DB, Junger WG (2001) Hypertonicity rescues T cells from suppression by trauma-induced anti-inflammatory mediators. Am J Physiol 281: C840–848Google Scholar
  27. 27.
    Coimbra R, Junger WG, Hoyt DB, Liu FC, Loomis WH, Evers MF (1996) Hypertonic saline resuscitation restores hemorrhage-induced immunosuppression by decreasing prostaglandin E2 and interleukin-4 production. J Surg Res 64: 203–209PubMedCrossRefGoogle Scholar
  28. 28.
    Oreopoulos GD, Bradwell S, Lu Z, et al (2001) Synergistic induction of IL-10 by hypertonic saline solution and lipopolysaccharides in murine peritoneal macrophages. Surgery 130: 157–165PubMedCrossRefGoogle Scholar
  29. 29.
    Coimbra R, Hoyt DB, Junger WG, et al (1997) Hypertonic saline resuscitation decreases susceptibility to sepsis after hemorrhagic shock. J Trauma 42: 602–606PubMedCrossRefGoogle Scholar
  30. 30.
    Oi Y, Aneman A, Svensson M, Ewert S, Dahlqvist M, Haljamae H (2000) Hypertonic salinedextran improves intestinal perfusion and survival in porcine endotoxin shock. Crit Care Med 28: 2843–2850PubMedCrossRefGoogle Scholar
  31. 31.
    Mazzoni MC, Borgstrom P, Intaglietta M, Arfors KE (1990) Capillary narrowing in hemorrhagic shock is rectified by hyperosmotic saline-dextran reinfusion. Circ Shock 31: 407–418PubMedGoogle Scholar
  32. 32.
    de CH, Matos JA, Bouskela E, Svensjo E (1999) Vascular permeability increase and plasma volume loss induced by endotoxin was attenuated by hypertonic saline with or without dextran. Shock 12: 75–80CrossRefGoogle Scholar
  33. 33.
    Assalia A, Bitterman H, Hirsh TM, Krausz MM (2001) Influence of hypertonic saline on bacterial translocation in controlled hemorrhagic shock. Shock 15: 307–311PubMedCrossRefGoogle Scholar
  34. 34.
    Maciel F, Mook M, Zhang H, Vincent JL (1998) Comparison of hypertonic with isotonic saline hydroxyethyl starch solution on oxygen extraction capabilities during endotoxic shock. Shock 9: 33–39PubMedCrossRefGoogle Scholar
  35. 35.
    Shields CJ, Winter DC, Sookhai S, Ryan L, Kirwan WO, Redmond HP (2000) Hypertonic saline attenuates end-organ damage in an experimental model of acute pancreatitis. Br J Surg 87: 1336–1340PubMedCrossRefGoogle Scholar
  36. 36.
    Wade CE, Kramer GC, Grady JJ, Fabian TC, Younes RN (1997) Efficacy of hypertonic 7.5% saline and 6% dextran-70 in treating trauma: a meta-analysis of controlled clinical studies. Surgery 122: 609–616PubMedCrossRefGoogle Scholar
  37. 37.
    Qureshi AI, Suarez JI (2000) Use of hypertonic saline solutions in treatment of cerebral edema and intracranial hypertension. Crit Care Med 28: 3301–3313PubMedCrossRefGoogle Scholar
  38. 38.
    Tuma RF, Vasthare US, Arfors KE, Young WF (1997) Hypertonic saline administration attenuates spinal cord injury. J Trauma 42: 554-S60CrossRefGoogle Scholar
  39. 39.
    Sumas ME, Legos JJ, Nathan D, Lamperti AA, Tuma RF, Young WF (2001) Tonicity of resuscitative fluids influences outcome after spinal cord injury. Neurosurgery 48: 167–172PubMedGoogle Scholar
  40. 40.
    Deb S, Martin B, Sun L, et al (1999) Resuscitation with lactated Ringer’s solution in rats with hemorrhagic shock induces immediate apoptosis. J Trauma 46: 582–588PubMedCrossRefGoogle Scholar
  41. 41.
    Dmitrieva N, Kultz D, Michea L, Ferraris J, Burg M (2000) Protection of renal inner medullary epithelial cells from apoptosis by hypertonic stress-induced p53 activation. J Biol Chem 275: 18243–18247PubMedCrossRefGoogle Scholar
  42. 42.
    Luo X, Huang Z, Xiao G, Tang A, Deng Y (1998) Protection of hypertonic saline/mannitol to thymic cell apoptosis induced by endotoxin ( LPS) in mice. Hunan Yi Ke Da Xue Xue Bao 23: 14–16PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • S. B. Rizoli
  • O. D. Rotstein
  • W. J. Sibbald

There are no affiliations available

Personalised recommendations