Bacterial CpG DNA in Septic Shock

  • E. Wiel
  • G. Lebuffe
  • B. Vallet


Septic shock develops when specific microbial components gain access to the circulation and are recognized by the immune system, generating exaggerated mediator and cytokine production. The main microbial components responsible for this recognition are lipopolysaccharide (LPS) in Gram-negative bacteria, or peptidoglycan and teichoic acid in Gram-positive bacteria. Microbial compounds display molecular pattern recognition receptors (PRR) — such as LPS receptors (Toll-like receptor [TLR]4 and CD14) which are expressed constitutively on innate immune system cells (macrophages and dendritics cells) [1].


Septic Shock Vaccine Adjuvant Major Histocompatability Complex Innate Immune System Cell Excessive Intracellular Reactive Oxygen Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Medzhitov R, Janeway CA Jr (1997) Innate immunity: the virtues of a nonclonal system recognition. Cell 91: 295–298PubMedCrossRefGoogle Scholar
  2. 2.
    Tokunaga T, Yamamoto H, Shimada S, et al (1984) Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity. J Natl Cancer Inst 72: 955–962PubMedGoogle Scholar
  3. 3.
    Krieg AK, Yi A-K, Matson S, et al (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546–549PubMedCrossRefGoogle Scholar
  4. 4.
    Krieg AM, Wu T, Weeratna R, et al (1998) Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proc Natl Acad Sci USA 95: 12631–12636PubMedCrossRefGoogle Scholar
  5. 5.
    Häcker H, Mischak H, Miethke T, et al (1998) CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J 17: 6230–6240PubMedCrossRefGoogle Scholar
  6. 6.
    Karlin S, Doerfler W, Cardon LR (1994) Why is CpG suppressed in the genomes of virtually all small eukaryotic viruses but not in those of large eukaryotic viruses? J Virol 68: 2889–2897PubMedGoogle Scholar
  7. 7.
    Krieg AM, Yi AK, Schorr J, Davis HL (1998) The role of CpG dinucleotides in DNA vaccines. Trends Microbiol 6: 23–27PubMedCrossRefGoogle Scholar
  8. 8.
    Krieg AM (1996) An innate immune defense mechanism based on the recognition of CpG motifs in microbial DNA. J Lab Clin Med 128: 128–133PubMedCrossRefGoogle Scholar
  9. 9.
    Hemmi H, Takeuchi O, Kawai T, et al (2000) A toll-like receptor recognizes bacterial DNA. Nature 408: 740–745PubMedCrossRefGoogle Scholar
  10. 10.
    Krieg AM, Hartmann G, Yi AK (2000) Mechanism of action of CpG DNA. Curr Top Microbiol Immunol 247: 1–21PubMedCrossRefGoogle Scholar
  11. 11.
    Yamamoto S, Yamamoto T, Shimada S, et al (1992) DNA from bacteria, but not from vertebrates, induces interferons, activates natural killer cells and inhibits tumor growth. Microbiol Immunol 36: 983–997PubMedGoogle Scholar
  12. 12.
    Krieg AM (2001) Immune effects and mechanisms of action of CpG motifs. Vaccine 19: 618–622CrossRefGoogle Scholar
  13. 13.
    Krieg AM (2001) From bugs to drugs: therapeutic immunomodulation with oligodeoxynucleotides containing CpG sequences from bacterial DNA. Antisense Nucleic Acid Drug Dev 11: 181–188PubMedCrossRefGoogle Scholar
  14. 14.
    Weighardt H, Feterowski C, Veit M, Rump M, Wagner H, Holzmann B (2000) Increased resistance against acute polymicrobial sepsis in mice challenged with immunostimulatory CpG oligodeoxynucleotides is related to an enhanced innate effector cell response. J Immunol 165: 4537–4543PubMedGoogle Scholar
  15. 15.
    Medzhitov R, Janeway C Jr (2000) Innate immunity. N Engl J Med 343: 338–344PubMedCrossRefGoogle Scholar
  16. 16.
    Hoshino K, Takeuchi O, Kawai T, et al (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162: 3749–3752PubMedGoogle Scholar
  17. 17.
    Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a receptor for complexes of lipopolysaccharide ( LPS) and LPS binding protein. Science 249: 1431–1433Google Scholar
  18. 18.
    Shimazu R, Akashi S, Ogata H, et al (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189: 1777–1782PubMedCrossRefGoogle Scholar
  19. 19.
    Beltinger C, Saragovi HU, Smith RM, et al (1995) Binding, uptake, and intracellular trafficking of phosphothioate-modified oligodeoxynucleotides. J Clin Invest 95: 1814–1823PubMedCrossRefGoogle Scholar
  20. 20.
    Hanss B, Stein CA, Klotman PE (1998) Cellular uptake and biodistribution of oligodeoxynucleotides. In: Stein CA, Krieg AM (eds) Applied Oligonucleotide Technology. John Wiley and Sons, Inc, New York, pp 431–448Google Scholar
  21. 21.
    Bennett RM, Gabor GT, Merritt MM (1985) DNA binding to human leukocytes. Evidence for a receptor-mediated association, internalization, and degradation of DNA. J Clin Invest 76: 2182–2190Google Scholar
  22. 22.
    Yi AK, Tuetken R, Redford T, Kirsch J, Krieg AM (1998) CpG motifs in bacterial DNA activates leukocytes through the pH-dependent generation of reactive oxygen species. J Immunol 160: 4755–4761PubMedGoogle Scholar
  23. 23.
    Zhao Q, Matson S, Herrera CJ, et al (1993) Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate, and mixed phosphorothioate and methylphosphonate oligonucleotides. Antisense Res Dev 3: 53–66PubMedGoogle Scholar
  24. 24.
    Häcker H (2000) Signal transduction pathways activated by CpG-DNA. Curr Top Microbiol Immunol 247: 77–92PubMedCrossRefGoogle Scholar
  25. 25.
    Yi AK, Klinman DM, Martin TL, Matson S, Krieg AM (1996) Rapid immune activation by CpG motifs in bacterial DNA: systemic induction of IL-6 transcription through an anti-oxidant-sensitive pathway. J Immunol 157: 5394–5402PubMedGoogle Scholar
  26. 26.
    Stacey KJ, Sweet MJ, Hume DA (1996) Macrophages ingest and are activated by bacterial DNA. J Immunol 157: 2116–2122PubMedGoogle Scholar
  27. 27.
    Sparwasser T, Miethke T, Lipford G, et al (1997) Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factor-a-mediated shock. Eur J Immunol 27: 1671–1679PubMedCrossRefGoogle Scholar
  28. 28.
    Yi AK, Krieg AM (1998) Rapid induction of mitogen activated protein kinases by immune stimulatory CpG DNA. J Immunol 161: 4493–4497PubMedGoogle Scholar
  29. 29.
    Krieg AM (2000) Signal transduction induced by immunostimulatory CpG DNA. Springer Semin Immunopathol 22: 97–105PubMedCrossRefGoogle Scholar
  30. 30.
    Lewis TS, Shapiro PS, Ahn NG (1998) Signal transduction through MAP kinases cascades. Adv Cancer Res 74: 49–139PubMedCrossRefGoogle Scholar
  31. 31.
    Baldwin As Jr (1996) The NF-KB and I-KB proteins: New discoveries and insights. Annu Rev Immunol 14: 649–681CrossRefGoogle Scholar
  32. 32.
    Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z (1997) MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7: 837–847PubMedCrossRefGoogle Scholar
  33. 33.
    Baeuerle PA, Henkel T (1994) Function and activation of NF-KB in the immune system. Annu Rev Immunol 12: 141–179PubMedCrossRefGoogle Scholar
  34. 34.
    Brennan P, O’Neil L (1995) Effects of oxidants and antioxydants on NF-KB activation in three different cell lines: evidence against a universal hypothesis involving oxygen radicals. Biochem Biophys Acta 1260: 1670–1675Google Scholar
  35. 35.
    Yi AK, Chang M, Peckham DW, Krieg AM, Ashman RF (1998) CpG oligodeoxynucleotides rescue mature spleen B cells from spontaneous apoptosis and promote cell cycle reentry. J Immunol 160: 4755–4761PubMedGoogle Scholar
  36. 36.
    Cowdery JS, Chace JH, Yi AK, Krieg AM (1996) Bacterial DNA induces NK cells to produce interferon-y in vivo and increases the toxicity of lipopolysaccharides. J Immunol 156: 45704575Google Scholar
  37. 37.
    Stacey KJ, Sester DP, Sweet MJ, Hume DA (2000) Macrophage activation by immunostimulatory DNA. Curr Top Microbiol Immunol 247: 41–58PubMedCrossRefGoogle Scholar
  38. 38.
    Klinman D, Yi AK, Beaucage SL, Conover J, Krieg AM (1996) CpG motifs expressed by bacterial DNA rapidly induce lymphocytes to secrete IL-6, IL-12 and IFNy. Proc Natl Acad Sci USA 93: 2879–2883PubMedCrossRefGoogle Scholar
  39. 39.
    Lipford GB, Sparwasser T, Bauer M, et al (1997) Immunostimulatory DNA: sequence-dependent production of potentially harmful or useful cytokines. Eur J Immunol 27: 3420–3426PubMedCrossRefGoogle Scholar
  40. 40.
    Sparwasser T, Miethke T, Lipford G, et al (1997) Bacterial DNA causes septic shock. Nature 386: 336–337PubMedCrossRefGoogle Scholar
  41. 41.
    Jakob T, Walker PS, Krieg AM, Udey MC, Vogel JC (1998) Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: A role for dendritic cells in the augmentation of Thl responses by immunostimulatory DNA. J Immunol 161: 3042–3049Google Scholar
  42. 42.
    Hartmann G, Krieg AM (1999) CpG DNA and LPS induce distinct patterns of activation in human monocytes. Gene Therapy 6: 893–903PubMedCrossRefGoogle Scholar
  43. 43.
    Wang Z, Karras JG, Colarusso TP, Foote LC, Rothstein TL (1997) Unmethylated CpG motifs protect murine B lymphocytes against Fas-mediated apoptosis. Cell Immunol 180: 162–167PubMedCrossRefGoogle Scholar
  44. 44.
    Lipford GB, Bauer M, Blank C, Reiter R, Wagner H, Heeg K (1997) CpG-containing synthetic oligonucleotides promote B and cytotoxic T cell responses to protein antigen: a new class of vaccine adjuvants. Eur J Immunol 27: 2340–2344PubMedCrossRefGoogle Scholar
  45. 45.
    Sun S, Zhang X, Tough DF, Sprent J (1998) Type I interferon-mediated stimulation of T cells by CpG DNA. J Exp Med 188: 2335–2342PubMedCrossRefGoogle Scholar
  46. 46.
    Bendigs S, Salzer U, Lipford GB, Wagner H, Heeg K (1999) CpG-oligodeoxynucleotides costimulate primary T cells in the absence of APC. Eur J Immunol 29: 1209–1218PubMedCrossRefGoogle Scholar
  47. 47.
    Sweet MJ, Stacey KJ, Kakuda DK, Markovich D, Hume DA (1998) IFN-y primes macrophage responses to bacterial DNA. J Interferon Cytokines Res 18: 263–271CrossRefGoogle Scholar
  48. 48.
    Poltorak A, He X, Smirnova I, et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/ 10ScCr mice: mutations in T1r4 gene. Science 282: 2085–2088PubMedCrossRefGoogle Scholar
  49. 49.
    Wiel E, Ban E, Lund. N, Riveau G, Vallet B (2001) CpG motifs are sensitizing agents for LPS in toxic shock model. Intensive Care Med 27 (suppl 2 ): S233 (Abst)Google Scholar
  50. 50.
    Pisetsky DS (1996) The immunologic properties of DNA. J Immunol 156: 421–423PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • E. Wiel
  • G. Lebuffe
  • B. Vallet

There are no affiliations available

Personalised recommendations