Lung Recruitment in Localized Lung Injury

  • L. Blanch
  • G. Murias
  • A. Nahum


Acute respiratory distress syndrome (ARDS) is characterized by diffuse pulmonary infiltrates, severe hypoxemia at high breathing oxygen concentrations, the presence of a precipitating underlying disease, acute onset, and absence of left ventricular failure. The pathophysiology of ARDS includes increased membrane permeability, decreased oncotic pressure, and augmented transvascular hydrostatic pressure gradients that cause non-cardiogenic pulmonary edema, atelectasis and loss of lung volume. As a result of these alterations, ventilation/perfusion (V/Q) heterogeneity and intrapulmonary shunt increase, and oxygenation is severely impaired. Although acute lung injury (ALI) does not have a unilateral distribution, some degree of in-homogeneity generally exits. In clinical practice, lobar or one lung pneumonia or atelectasis, and lung contusion are common findings. In this scenario, application of positive intrathoracic pressure may over-inflate the uninvolved more compliant lung and divert pulmonary blood flow to the injured lung, thereby worsening V/Q mismatch and decreasing oxygenation [1–7].


Lung Injury Tidal Volume Acute Lung Injury Acute Respiratory Distress Syndrome Respir Crit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kanarek DJ, Shannon DC (1975) Adverse effect of positive end-expiratory pressure on pulmonary perfusion and arterial oxygenation. Am Rev Respir Dis 112: 457–459PubMedGoogle Scholar
  2. 2.
    Mink SN, Light RB, Wood LHD (1981) Effect of PEEP on gas exchange and pulmonary perfusion in canine lobar pneumonia. J App! Physiol 50: 517–523Google Scholar
  3. 3.
    Blanch L, Roussos C, Brotherton S, Michel RP, Angle MR (1992) Effect of tidal volume and PEEP in ethchlorvynol-induced asymmetric lung injury. J Appl Physiol 73: 108–116PubMedGoogle Scholar
  4. 4.
    Remolina C, Khan AU, Santiago TV, Edelman NH (1981) Positional hypoxemia in unilateral lung disease. N Engl J Med 304: 523–525PubMedCrossRefGoogle Scholar
  5. 5.
    Marini JJ (1984) Postoperative atelectasis: pathophysiology, clinical importance, and principles of management. Respir Care 29: 516–528Google Scholar
  6. 6.
    Craven KD, Oppenheimer L, Wood LDH (1979) Effects of contusion and flail chest on pulmonary perfusion and oxygen exchange. J Appl Physiol 47: 729–737PubMedGoogle Scholar
  7. 7.
    Cohn SM (1997) Pulmonary contusion: review of the clinical entity. J Trauma 42: 973–979PubMedCrossRefGoogle Scholar
  8. 8.
    Carlon GC, Ray C, Klein R, Goldiner PL, Miodownik S (1978) Criteria for selective positive end-expiratory pressure and independent synchronized ventilation of each lung. Chest 74: 501–507PubMedCrossRefGoogle Scholar
  9. 9.
    Blanch L, Fernandez R, Baigorri F, Valles J, Bonsoms N, Artigas A (1992) Efecto del volumen corriente y de la posición sobre la oxigenación y la mecânica pulmonar en pacientes afectos de neumonia unilateral ventilados mecanicamente. Med Intensiva 16: 318–323Google Scholar
  10. 10.
    Vieira SRR, Puybasset L, Lu Q, et al (1999) A scanographic assessment of pulmonary morphology in acute lung injury. Significance of the lower inflection point detected on the lung pressure-volume curve. Am J Respir Crit Care Med 159: 1612–1623PubMedCrossRefGoogle Scholar
  11. 11.
    Puybasset L, Cluzel P, Chao N, Slutsky AS, Coriat P, Rouby JJ, and the CT scan study group (1998) A computed tomography scan assessment of regional lung volume in acute lung injury. Am J Respir Crit Care Med 158: 1644–1654PubMedCrossRefGoogle Scholar
  12. 12.
    Gattinoni L, Pelosi P, Crotti S, Valenza F (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151: 1807–1814PubMedCrossRefGoogle Scholar
  13. 13.
    Crotti S, Mascheroni D, Caironi P, et al (2001) Recruitment and derecruitment during acute respiratory failure. A clinical study. Am J Respir Crit Care Med 164: 131–140PubMedCrossRefGoogle Scholar
  14. 14.
    Puybasset L, Gusman P, Muller JC, Cluzel P, Coriat P, Rouby JJ, and the CT Scan ARDS Study Group (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. III. Consequences for the effects of positive end-expiratory pressure. Intensive Care Med 26: 1215–1227PubMedCrossRefGoogle Scholar
  15. 15.
    Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A (1998) Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Crit Care Med 158: 3–11PubMedCrossRefGoogle Scholar
  16. 16.
    Dreyfuss D, Saumon G (1998) Ventilator induced lung injury. Lessons from experimental studies. Am J Respir Crit Care Med 157: 294–323Google Scholar
  17. 17.
    International Consensus Conferences in Intensive Care Medicine (1999) Ventilator-associated lung injury in ARDS. Am J Respir Crit Care Med 160: 2118–2124CrossRefGoogle Scholar
  18. 18.
    Amato MBP, Barbas CS, Medeiros DM, et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338: 347–354PubMedCrossRefGoogle Scholar
  19. 19.
    The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: 1301–1308CrossRefGoogle Scholar
  20. 20.
    Light RB, Mink SN, Wood LHD (1981) The effect of unilateral PEEP on gas exchange and pulmonary perfusion in canine lobar pneumonia. Anesthesiology 55: 251–255PubMedCrossRefGoogle Scholar
  21. 21.
    Nahum A, Burke WC, Ravenscraft SA, et al (1992) Lung mechanics and gas exchange during pressure-control ventilation in dogs. Augmentation of CO2 elimination by an intra-tracheal catether. Am Rev Respir Dis 146: 965–973PubMedCrossRefGoogle Scholar
  22. 22.
    Nahum A, Ravenscraft SA, Nakos G, et al (1992) Tracheal gas insufflation during pressure-control ventilation. Effect of catheter position, diameter, and flow rate. Am Rev Respir Dis 146: 1411–1418PubMedCrossRefGoogle Scholar
  23. 23.
    Ravenscraft SA, Burke WC, Nahum A, et al (1993) Tracheal gas insufflation augments CO2 clearence during mechanical ventilation. Am Rev Respir Dis 148: 345–351PubMedCrossRefGoogle Scholar
  24. 24.
    Kalfon P, Umamaheswara GS, Gallart L, Puybasset L, Coriat P, Rouby JJ (1997) Permissive hypercapnia with and without expiratory washout in patients with severe acute respiratory distress syndrome. Anesthesiology 87: 6–17PubMedCrossRefGoogle Scholar
  25. 25.
    Burke WC, Nahum A, Ravenscraft SA, et al (1993) Modes of tracheal gas insufflation. Comparison of continuous and phase-specific gas injection in normal dogs. Am Rev Respir Dis 148: 562–568PubMedCrossRefGoogle Scholar
  26. 26.
    Nakos G, Zakinthinos S, Kotanidou A, Roussos C (1994) Tracheal gas insufflation reduces the tidal volume while PaCO2 is maintained constant. Intensive Care Med 20: 407–413PubMedCrossRefGoogle Scholar
  27. 27.
    Richecoeur J, Lu Q, Vieira SRR, et al (1999) Expiratory washout versus optimization of mechanical ventilation during permissive hypercapnia in patients with severe acute respiratory distress syndrome. Am J Respir Crit Care Med 160: 77–85PubMedCrossRefGoogle Scholar
  28. 28.
    Blanch L (2001) Clinical studies of tracheal gas insufflation. Respir Care 46: 158–166PubMedGoogle Scholar
  29. 29.
    Karwande SV (1987) A new tube for single lung ventilation. Chest 92: 761–763PubMedCrossRefGoogle Scholar
  30. 30.
    Kamaya H, Krishna PR (1985) New endotracheal tube ( Univent tube®) for selective blockade of one lung. Anesthesiology 63: 342–343Google Scholar
  31. 31.
    Blanch L, Van der Kloot TE, Youngblood AM, et al (2001) Application of tracheal gas insufflation to acute unilateral lung injury in an experimental model. Am J Respir Grit Care Med 164: 642–647CrossRefGoogle Scholar
  32. 32.
    Tutuncü AS, Faithfull NS, Lachmann B (1993) Intratracheal perfluorocarbon administration combined with mechanical ventilation in experimental respiratory distress syndrome: dose-dependent improvement of gas exchange. Crit Care Med 21: 962–969PubMedCrossRefGoogle Scholar
  33. 33.
    Tutuncü AS, Faithfull NS, Lachmann B (1993) Comparison of ventilatory support with intratracheal perfluorocarbon administration and conventional mechanical ventilation in animals with acute respiratory failure. Am Rev Respir Dis 148: 785–792PubMedCrossRefGoogle Scholar
  34. 34.
    Hirschl RB, Pranikoff T, Wise C, et al (1996) Initial experience with partial liquid ventilation in adult patients with the acute respiratory distress syndrome. JAMA 275: 383–389PubMedCrossRefGoogle Scholar
  35. 35.
    Kirmse M, Fujino Y, Hess D, Kacmarek RM (1998) Positive end-expiratory pressure improves gas exchange and pulmonary mechanics during partial liquid ventilation. Am J Respir Crit Care Med 158: 1550–1556PubMedCrossRefGoogle Scholar
  36. 36.
    Meszaros E, Ogawa R (1997) Continuous low-flow tracheal gas insufflation during partial liquid ventilation in rabbits. Acta Anesthesiol Scand 41: 861–867CrossRefGoogle Scholar
  37. 37.
    Moomey CB, Fabian TC, Croce MA, Melton SM, Proctor KG (1998) Cardiopulmonary function after pulmonary contusion and partial liquid ventilation. J Trauma 45: 283–290PubMedCrossRefGoogle Scholar
  38. 38.
    Blanch L, Van der Kloot TE, Youngblood AM, et al (2002) Selective tracheal gas insufflation during partial liquid ventilation improve lung function in an animal model of unilateral acute lung injury. Crit Care Med (in press)Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • L. Blanch
  • G. Murias
  • A. Nahum

There are no affiliations available

Personalised recommendations