The Rationale for Vasodilator Therapy in Sepsis

  • M. Siegemund
  • I. Racovitza
  • C. Ince


In 1969, Joly and Weil showed a direct correlation between toe skin temperature, cardiac output and survival [1]. Since that time many hemodynamic studies in sepsis and septic shock have evaluated therapeutic strategies to increase cardiac output, blood pressure and organ blood flow. Their effect on the skin and other micro-circulatory areas has been neglected for the most part, probably because no monitoring techniques were available. Initial studies showed improved survival after the optimization of oxygen delivery (DO2) [2, 3]. However, controlled clinical trials establishing normal or even supra-normal DO2 values failed to show any survival benefits [4, 5]. A therapeutic increase in blood pressure did not significantly affect surrogate markers of microcirculatory tissue perfusion and function [6]. In addition, the non-selective inhibition of the endothelial vasodilator nitric oxide (NO), acting primarily in the microcirculation, by L-NG-methylarginine increased mortality in patients with septic shock [7]. One possible cause of this increased mortality is that unselective blockade of NO synthase (NOS) further harms the microcirculatory blood flow and aggravates the already existing impaired tissue oxygenation [8]. This tissue dysoxia, a primary feature of endotoxemia and sepsis, may result from disturbed tissue DO2 and/or a defect in cellular oxygen utilization resulting in a cellular oxygen extraction deficit [9, 10]. This extraction deficit could be causally related to a shut down of vulnerable microcirculatory units in organ beds promoting shunt flow of oxygen from the microcirculation to the venous system [10]. This effect could be aggravated in sepsis where normally available autoregulatory mechanisms are disturbed leaving these weak microcirculatory units dysoxic [11–15]. In the present chapter, we will address pathophysiologic changes in the microcirculation in sepsis regarding a possible role of vasodilator drugs or selective inducible NOS (iNOS) blocking drugs to improve microcirculatory blood flow and oxygenation.


Nitric Oxide Endotoxic Shock Vasodilator Therapy Microvascular Blood Flow Microcirculatory Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Joly HR, Weil MH (1969) Temperature of the great toe as an indication of the severity of shock. Circulation 39: 131–138PubMedCrossRefGoogle Scholar
  2. 2.
    Boyd 0, Grounds RM, Bennett ED (1993) The beneficial effect of supranormalization of oxygen delivery with dopexamine hydrochloride on perioperative mortality. JAMA 270: 2699–2707PubMedCrossRefGoogle Scholar
  3. 3.
    Shoemaker WC, Appel PL, Kram HB (1993) Hemodynamic and oxygen transport responses in survivors and nonsurvivors of high-risk surgery. Grit Care Med 21: 56–63CrossRefGoogle Scholar
  4. 4.
    Gattinoni L, Brazzi L, Pelosi P, et al (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med 333: 1025–1032PubMedCrossRefGoogle Scholar
  5. 5.
    Hayes MA, Timmins AC, Yau EHS, Palazzo M, Hinds CJ, Watson D (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330: 17171722Google Scholar
  6. 6.
    LeDoux D, Astiz ME, Carpati CM, Rackow EC (2000) Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28: 2729–2732PubMedCrossRefGoogle Scholar
  7. 7.
    Grover R, Lopez A, Lorente J, et al (1999) Multi-center, randomized, placebo-controlled, double blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock (Abstr). Crit Care Med 27 (Suppl.): A33CrossRefGoogle Scholar
  8. 8.
    Avontuur JA, Bruining HA, Ince C (1995) Inhibition of nitric oxide synthesis causes myocardial ischemia in endotoxemic rats. Circ Res 76: 418–425PubMedCrossRefGoogle Scholar
  9. 9.
    Fink MP (1997) Cytopathic hypoxia in sepsis. Acta Anaesthesiol Scand (Suppl 110 ): 87–95CrossRefGoogle Scholar
  10. 10.
    Ince C, Sinaasappel M (1999) Microcirculatory oxygenation and shunting in sepsis and shock. Grit Care Med 27: 1369–1377CrossRefGoogle Scholar
  11. 11.
    Avontuur JAM, Bruining HA, Ince C (1997) Nitric oxide causes dysfunction of coronary autoregulation in endotoxemic rats. Cardiovasc Res 35: 368–376PubMedCrossRefGoogle Scholar
  12. 12.
    Hinshaw LB (1996) Sepsis/septic shock: participation of the microcirculation: an abbreviated review. Crit Care Med 24: 1072–1078PubMedCrossRefGoogle Scholar
  13. 13.
    Ince C (2000) Microcirculatory weak units–an alternative explanation: In reply (letter). Grit Care Med 28: 3127–3129CrossRefGoogle Scholar
  14. 14.
    Lush CW, Kvietys PR (2000) Microvascular dysfunction in sepsis. Microcirculation 7: 83101Google Scholar
  15. 15.
    Vallet B (1998) Vascular reactivity and tissue oxygenation. Intensive Care Med 24: 3–11PubMedCrossRefGoogle Scholar
  16. 16.
    Spain DA, Wilson MA, Krysztopik RJ, Matheson PJ, Garrison RN (1997) Differential intestinal microvascular dysfunction occurs during bacteremia. J Surg Res 67: 67–71PubMedCrossRefGoogle Scholar
  17. 17.
    Baker CH, Sutton ET (1993) Arteriolar endothelium-dependent vasodilation occurs during endotoxin shock. Am J Physiol 264: H1118 - H1123PubMedGoogle Scholar
  18. 18.
    Lam C, Tyml K, Martin C, Sibbald W (1994) Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest 94: 2077–2083PubMedCrossRefGoogle Scholar
  19. 19.
    Spain DA, Wilson MA, Bar-Natan MF, Garrison RN (1994) Nitric oxide synthase inhibition aggravates intestinal microvascular vasoconstriction and hypoperfusion of bacteremia. J Trauma 36: 720–725PubMedCrossRefGoogle Scholar
  20. 20.
    Hiltebrand LB, Krejci V, Banic A, Erni D, Wheatly AM, Sigurdsson GH (2000) Dynamic study of the distribution of microcirculatory blood flow in multiple splanchnic organs in septic shock. Crit Care Med 28: 3233–3241PubMedCrossRefGoogle Scholar
  21. 21.
    Hollenberg SM, Broussard M, Osman J, Parillo JE (2000) Increased microvascular reactivity and improved mortality in septic mice lacking inducible nitric oxide synthase. Circ Res 86: 774–779PubMedCrossRefGoogle Scholar
  22. 22.
    Murray PT, Wylam ME, Umans JG (2000) Nitirc oxide and septic vascular dysfunction. Anesth Analg 90: 89–101PubMedCrossRefGoogle Scholar
  23. 23.
    Liaudet L, Soriano FG, Szabo C (2000) Biology of nitric oxide signaling. Grit Care Med 28: N37 - N52CrossRefGoogle Scholar
  24. 24.
    Grover R, Zaccardelli D, Colice G, Guntupalli K, Watson D, Vincent JL (1999) An open-label dose escalation study of the nitric oxide synthase inhibitor, NG-methyl-L-arginine hydrochloride (546C88), in patients with septic shock. Crit Care Med 27: 913–922PubMedCrossRefGoogle Scholar
  25. 25.
    Träger K, Rademacher P, Rieger KM, et al (1999) Norepinephrine and NG-monomethyl-Larginine in porcine sepitc shock. Am J Respir Crit Care Med 159: 1758–1765PubMedCrossRefGoogle Scholar
  26. 26.
    Cobb JP, Natanson C, Hoffman WD, et al (1992) N omega-amino-L-arginine, an inhibitor of nitric oxide synthase, raises vascular resistance but increases mortality rates in awake canines challenged with endotoxin. J Exp Med 176: 1175–1182Google Scholar
  27. 27.
    Pastor C, Teisseire B, Vicaut E, Payen D (1994) Effects of L-arginine and L-nitro-arginine treatment on blood pressure and cardiac output in a rabbit endotoxin shock model. Crit Care Med 22: 465–469PubMedCrossRefGoogle Scholar
  28. 28.
    Vallet B (2001) Vascular nitric oxide during sepsis: From deficiency to overproduction. Advances in Sepsis 1: 52–57Google Scholar
  29. 29.
    Bhagat K, Moss R, Collier J, Valiance P (1996) Endothelial “stunning” following a brief exposure to endotoxin: a mechanism to link infection and infarction? Cardiovasc Res 32: 822829Google Scholar
  30. 30.
    Leclerc J, Pu Q, Corseaux D, et al (2000) A single endotoxin injection in the rabbit causes prolonged blood vessel dysfunction and a procoagulant state. Crit Care Med 28: 3672–368PubMedCrossRefGoogle Scholar
  31. 31.
    Ellis CG, Wrigley SM, Groom AC (1994) Heterogeneity of red blood cell perfusion in capillary networks supplied by a single arteriole in resting skeletal muscle. Circ Res 75: 357–368PubMedCrossRefGoogle Scholar
  32. 32.
    Astiz ME, DeGent GE, Lin RY, Rackow EC (1995) Microvascular function and rheologic changes in hyperdynamic sepsis. Crit Care Med 23: 265–271PubMedCrossRefGoogle Scholar
  33. 33.
    Baskurt OK, Gelmont D, Meiselman HI (1998) Red blood cell deformability in sepsis. Am J Respir Crit Care Med 157: 421–427PubMedCrossRefGoogle Scholar
  34. 34.
    Eichelbrönner 0, Sielenkämper A, Cepinskas G, Sibbald WJ, Chin-Yee IH (2000) Endotoxin promotes adhesion of human erythrocytes to human vascular endothelial cells under conditions of flow. Crit Care Med 28: 1865–1870PubMedCrossRefGoogle Scholar
  35. 35.
    Siegemund M, Hardeman MR, van Bommel J, Stegenga ME, Lind A, Ince C (1999) Red blood cell deformabillity in two different doses of LPS in a porcine model of endotoxemia. Intensive Care Med 25: S21 (Abst)Google Scholar
  36. 36.
    Korbut R, Gryglewski RJ (1993) Nitric oxide from polymorphonuclear leukocytes modulates red blood cell deformability in vitro. Eur J Pharmacol 234: 17–22PubMedCrossRefGoogle Scholar
  37. 37.
    McCuskey RS, Urbaschek R, Urbaschek B (1996) The microcirculation during endotoxemia. Cardiovasc Res 32: 752–763PubMedGoogle Scholar
  38. 38.
    Worthen GS, Schwab B, 3rd, Elson EL, Downey GP (1989) Mechanics of stimulated neutrophils: cell stiffening induces retention in capillaries. Science 245: 183–186PubMedCrossRefGoogle Scholar
  39. 39.
    Bernard GR, Vincent JL, Laterre PF, et al. (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344: 699–709PubMedCrossRefGoogle Scholar
  40. 40.
    Matthay MA (2001) Severe Sepsis–A new treatment with both anticoagulant and antiinflamatory properties. N Engl J Med 344: 759–762PubMedCrossRefGoogle Scholar
  41. 41.
    Taylor AE, Moore TM (1999) Capillary fluid exchange. Am J Physiol 277: S203–5210PubMedGoogle Scholar
  42. 42.
    Groeneveld AB, van Lambalgen AA, van den Bos GC, Bronsveld W, Nauta JJ, Thijs LG (1991) Maldistribution of heterogeneous coronary blood flow during canine endotoxin shock. Cardiovasc Res 25: 80–88PubMedCrossRefGoogle Scholar
  43. 43.
    Ince C, Ashruf JF, Avontuur JA, Wieringa PA, Spaan JA, Bruining HA (1993) Heterogeneity of the hypoxic state in rat heart is determined at capillary level. Am J Physiol 264: H294 - H301PubMedGoogle Scholar
  44. 44.
    Siegemund M, van Bommel J, Schwarte LA, Emons M, Ince C (2001) Selective blockade of iNOS by 1400W, but not by LNMA, is beneficial to myocardial oxygenation after endotoxaemia. Intensive Care Med 27: S180 (Abst)Google Scholar
  45. 45.
    Pastor CM (1999) Vascular hyporesponsiveness of the renal circulation during endotoxemia in anesthetized pigs. Crit Care Med 27: 2735–2740PubMedCrossRefGoogle Scholar
  46. 46.
    Shultz PJ, Raij L (1992) Endogenously synthesized nitiric oxide prevents endotoxine-induced glomerular thrombosis. J Clin Invest 90: 1718–1725PubMedCrossRefGoogle Scholar
  47. 47.
    Siegemund M, van Bommel J, Stegenga ME, Ince C (2000) Effect of dopexamine and dopamine on kidney cortex tissue P02 in a porcine model of low-dose endotoxemia. Intensive Care Med 26: S258 (Abst)Google Scholar
  48. 48.
    Haglund U (1994) Gut ischaemia. Gut 35: S73 - S76CrossRefGoogle Scholar
  49. 49.
    Sinaasappel M, van Iterson M, Ince C (1999) Microvascular oxygen pressure in the pig intestine during haemorrhagic shock and resuscitation. J Physiol 514: 245–253PubMedCrossRefGoogle Scholar
  50. 50.
    Siegemund M, van Bommel J, Ince C (1999) Assessment of tissue oxygenation. Intensive Care Med 25: 1044–1060PubMedCrossRefGoogle Scholar
  51. 51.
    Siegemund M, van Bommel J, Stegenga ME, Ince C (1999) Influence of dopexamine on the gut oxygenation in a porcine model of low-dose endotoxaemia. Intensive Care Med 25: 5115CrossRefGoogle Scholar
  52. 52.
    Russel JA (1997) Gastric tonometry: does it work? Intensive Care Med 23: 3–6CrossRefGoogle Scholar
  53. 53.
    Revelly JP, Ayuse T, Brienza N, Fessler HE, Robotham JL (1996) Endotoxic shock alters distribution of blood flow within the intestinal wall. Crit Care Med 24: 1345–1351PubMedCrossRefGoogle Scholar
  54. 54.
    Revelly J-P, Liaudet L, Frascarolo P, Joseph J-M, Martinet O, Markert M (2000) Effects of norepinephrine on the distribution of intestinal blood flow and tissue adenosine triphosphate content in endotoxic shock. Crit Care Med 28: 2500–2506PubMedCrossRefGoogle Scholar
  55. 55.
    Neviere RR, Pitt-Hyde ML, Piper RD, Sibbald WJ, Potter RF (1999) Microvascular perfusion deficits are not a prerequisite for mucosal injury in septic rats. Am J Physiol 276: G933 - G940PubMedGoogle Scholar
  56. 56.
    van der Meer JT, Wang H, Fink MP (1995) Endotoxemia causes ileal mucosal acidosis in the absence of mucosal hypoxia in a normodynamic porcine model of septic shock. Crit Care Med 23: 1217–1226CrossRefGoogle Scholar
  57. 57.
    Szabo C, Cuzzocrea S, Zingarelli B, O’Connor M, Salzman AL (1997) Endothelial dysfunction in a rat model of endotoxic shock. Importance of the activation of poly ( ADP-ribose) synthetase by peroxynitrite. J Clin Invest 100: 723–735Google Scholar
  58. 58.
    Shen W, Hintze TH, Wolin MS (1995) Nitric oxide. An important signaling mechanism between vascular endothelium and parenchymal cells in the regulation of oxygen consumption. Circulation 92: 3505–512Google Scholar
  59. 59.
    Scheeren T, Radermacher P (1997) Prostacyclin (PGI2): new aspects of an old substance in the treatment of critically ill patients. Intensive Care Med 23: 146–158PubMedCrossRefGoogle Scholar
  60. 60.
    Bihari D, Smithies M, Gimson A, Tinker J (1987) The effects of vasodilation with prostacy-clin on oxygen delivery and uptake in critically ill patients. N Engl J Med 317: 397–403PubMedCrossRefGoogle Scholar
  61. 61.
    Pittet JF, Lacroix JS, Gunning K, Laverriere MC, Morel DR, Suter PM (1990) Prostacyclin but not phentolamine increases oxygen consumption and skin microvascular blood flow in patients with sepsis and respiratory failure. Chest 98: 1467–1472PubMedCrossRefGoogle Scholar
  62. 62.
    Eichelbronner 0, Reinelt H, Wiedeck H, et al (1996) Aerosolized prostacyclin and inhaled nitric oxide in septic shock–different effects on splanchnic oxygenation? Intensive Care Med 22: 880–887PubMedCrossRefGoogle Scholar
  63. 63.
    Radermacher P, Buhl R, Santak B, et al (1995) The effects of prostacyclin on gastric intramucosal pH in patients with septic shock. Intensive Care Med 21: 414–421PubMedCrossRefGoogle Scholar
  64. 64.
    Gundersen Y, Corso CO, Leiderer R, et al (1998) The nitric oxide donor sodium nitroprusside protects against hepatic microcirculatory dysfunction in early endotoxaemia. Intensive Care Med 24: 1257–1263PubMedCrossRefGoogle Scholar
  65. 65.
    Pastor CM, Losser MR, Payen D (1995) Nitirc oxide donor prevents hepatic and systemic perfusion decrease induced by endotoxin in anesthetized rabbits. Hepatology 22: 1547–1553PubMedGoogle Scholar
  66. 66.
    Zhang H, Rogiers P, Friedman G, et al (1996) Effects of nitric oxide donor SIN-1 on oxygen availability and regional blood flow during endotoxic shock. Arch Surg 131: 767–774PubMedCrossRefGoogle Scholar
  67. 67.
    Zhang H, Rogiers P, Smail N, et al (1997) Effects of nitric oxide on blood flow distribution and extraction capabilities during endotoxic shock. J Appl Physiol 83: 1164–1173PubMedGoogle Scholar
  68. 68.
    Siegemund M, van Bommel J, Vollebregt K, Dries J, Ince C (2000) Influence of the NO-donor SIN-1 on the gut oxygenation in a normodynamic, porcine model of endotoxaemia. Intensive Care Med 26: S344 (Abst)Google Scholar
  69. 69.
    Schwartz D, Mendonca M, Schwartz I, et al (1997) Inhibition of constitutive nitric oxide synthase ( NOS) by nitric oxide generated by inducible NOS after lipopolysaccharide administration provokes renal dysfunction in rats. J Clin Invest 100: 439–448Google Scholar
  70. 70.
    Liaudet L, Rosselet A, Schaller MD, Markert M, Perret C, Feihl F (1998) Nonselective versus selective inhibition of inducible nitric oxide synthase in experimental endotoxic shock. J Infect Dis 177: 127–132PubMedCrossRefGoogle Scholar
  71. 71.
    Matejovic M, Radermacher P, Tugtekin I, et al (2001) Effects of selective iNOS inhibition on gut and liver 02-exchange and energy metabolism during hyperdynamic porcine endotoxemia. Shock 16: 203–210PubMedCrossRefGoogle Scholar
  72. 72.
    Siegemund M, van Bommel J, Schwarte LA, Emons M, Ince C (2001) Selective blockade of iNOS by 1400W restores the gut oxygenation in a pig model of low-dose endotoxemia. Intensive Care Med 27: S147 (Abst)Google Scholar
  73. 73.
    Morin M, J, Unno N, Hodin RA, Fink MP (1998) Differential experession of inducible nitric oxide synthase messenger RNA along the longitudinal and crypt-villus axes of the intestine in endotoxemic rats. Crit Care Med 26: 1258–1264Google Scholar
  74. 74.
    Groner W, Winkelman JW, Harris AG, et al (1999) Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med 5: 1209–1212PubMedCrossRefGoogle Scholar
  75. 75.
    Mathura KR, Alic L, Ince C (2001) Initial clinical experience with OPS imaging for observation of the human microcirculation. In: Vincent J-L (ed) Yearbook of Intensive Care and Emergency Medicine 2001. Springer-Verlag, Berlin, pp 233–244Google Scholar
  76. 76.
    Mathura KR, Bouma GJ, Ince C (2001) Abnormal microcirculation in brain tumours during surgery. Lancet 358: 1698–1699PubMedCrossRefGoogle Scholar
  77. 77.
    Mathura KR, Vollebregt KC, Boer K, De Graaff JC, Ubbink DT, Ince C (2001) Comparison of OPS imaging and conventional capillary microscopy to study the human microcirculation. J Appl Physiol 91: 74–78PubMedGoogle Scholar
  78. 78.
    Gardien MJ, Spronk PE, Ince C, Oudemans-van Straaten HM, Zandstra DF (2001) Optimizing microvascular flow during resuscitation of patients in cardiogenic shock with nitroglycerin: visualisation by sublingual capillaroscopy. Intensive Care Med 27: S236 (Abst)Google Scholar
  79. 79.
    Spronk PE, Gardien MJ, Ince C, Oudemans-van Straaten HM, Zandstra DF (2001) Micro-vascular recruitment by nitroglycerin during resuscitation of patients in septic shock: visualisation by sublingual capillaroscopy. Intensive Care Med 27: S251 (Abst)Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • M. Siegemund
  • I. Racovitza
  • C. Ince

There are no affiliations available

Personalised recommendations