High Volume Hemofiltration in Sepsis

  • K. Reiter
  • R. Bellomo
  • C. Ronco


Continuous renal replacement therapy (CRRT) in the intensive care unit (ICU) is a common treatment in acute renal failure. CRRT is mainly conceived as merely supportive and as a replacement of the lost kidney function. On the other hand, evidence accumulated over recent years demonstrates that many soluble mediators of the systemic inflammatory (and anti-inflammatory) response syndrome (SIRS) can be removed by CRRT. This has led to the suggestion that CRRT could play a major role in sepsis therapy as an immunomodulatory treatment and not only as a blood purification technique. In this perspective, whereas animal studies yielded encouraging results, early clinical trials showed only minor clinical benefits, mainly dealing with hemodynamic improvements. The question of treatment dose has appropriately been raised as it remains undefined and a matter of controversy. A large-scale clinical trial has clarified issues on treatment dose in acute renal failure but a sufficiently powered study on hemofiltration dose in sepsis is still lacking.


Septic Shock Continuous Renal Replacement Therapy Ethyl Pyruvate Ultrafiltration Rate Continuous Venovenous Hemofiltration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pinsky MR (2001) Sepsis: a pro-and anti-inflammatory disequilibrium syndrome. Contrib Nephrol 132: 354–366PubMedCrossRefGoogle Scholar
  2. 2.
    Adrie C, Pinsky MR (2000) The inflammatory balance in human sepsis. Intensive Care Med 26: 364–375PubMedCrossRefGoogle Scholar
  3. 3.
    Casey LC, Balk RA, Bone RC (1993) Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med 15: 771–778CrossRefGoogle Scholar
  4. 4.
    Pinsky MR, Vincent JL, Deviere J, Alegre M, Kahn RJ, Dupont E (1993) Serum cytokine levels in human septic shock. Relation to multiple-system organ failure and mortality. Chest 103: 565–575Google Scholar
  5. 5.
    Adib-Conquy M, Adrie C, Moine P, et al (2000) NF-kB expression in mononuclear cells of septic patients resembles that observed in LPS tolerance. Am J Respir Crit Care Med 162: 1877–1883PubMedCrossRefGoogle Scholar
  6. 6.
    Van Dissel JT, van Langevelde P, Westendorp RG, Kwappenberg K, Froelich M (1998) Anti-inflammatory cytokine profile and mortality in febrile patients. Lancet 351: 950–953PubMedCrossRefGoogle Scholar
  7. 7.
    Klosterhalfen B, Horstmann-Jungemann K, Vogel P, et al (1991) Hemodynamic variables and plasma levels of PGI2, TXA2 and IL-6 in a porcine model of recurrent endotoxemia. Circ Shock 35: 237–244PubMedGoogle Scholar
  8. 8.
    Abraham E, Matthay M, Dinarello CA, et al (2000) Consensus Conference definitions for sepsis, septic shock, acute lung injury, and acute respiratory distress syndrome: time for a reevaluation. Crit Care Med 28: 232–235PubMedCrossRefGoogle Scholar
  9. 9.
    Abraham E, Glauser MP, Butler T, et al (1997) p55 tumor necrosis factor receptor fusion protein in the treatment of patients with severe sepsis and septic shock. A randomized controlled multicenter trial. Ro 45–2081 study group. JAMA 277: 1531–1538Google Scholar
  10. 10.
    Fisher CJ, Agosti JM, Opal SM (1996) Treatment of septic shock with the tumor necrosis factor receptor: Fc fusion protein. New Engl J Med 334: 1697–1702Google Scholar
  11. 11.
    Echtenacher B, Falk W, Mannel D, Krammer PH (1990) Requirement of endogenous tumour necrosis factor/cachectin for recovery from experimental peritonitis. J Immunol 145: 3762–3766PubMedGoogle Scholar
  12. 12.
    Van der Meer JWM (1988) The effects of recombinant interleukin-1 and recombinant tumor necrosis factor on non-specific resistance to infection. Biotherapy 1: 19–25PubMedCrossRefGoogle Scholar
  13. 13.
    Ronco C, Ricci Z, Bellomo R (2001) Importance of increased ultrafiltration volume and impact on mortality: sepsis and cytokine story and the role of continuous veno-venous hemofiltration. Curr Opin Nephrol Hypertens 10: 755–761PubMedCrossRefGoogle Scholar
  14. 14.
    De Vriese AS, Vanholder RC, Pascual M, Lameire NH, Colardyn FA (1999) Can inflammatory cytokines be removed efficiently by continuous renal replacement therapies? Intensive Care Med 25: 903–910PubMedCrossRefGoogle Scholar
  15. 15.
    Hoffmann JN, Hartl WH, Deppisch R, Faist E, Jochum M, Inthorn D (1995) Hemofiltration in human sepsis: evidence for elimination of immunomodulatory substances. Kidney Int 48: 1563–1570PubMedCrossRefGoogle Scholar
  16. 16.
    Gasche Y, Pascual M, Suter PM, Favre H, Chevrolet JC, Schifferli JA (1996) Complement depletion during haemofiltration with polyacetonitrile membranes. Nephrol Dial Transplant 11: 117–119PubMedCrossRefGoogle Scholar
  17. 17.
    Kellum JA, Johnson JP, Kramer D, Palevsky P, Brady JJ, Pinsky MR (1998) Diffusive vs. convective therapy: effects on mediators of inflammation in patients with severe systemic inflammatory response syndrome. Crit Care Med 26: 1995–2000PubMedCrossRefGoogle Scholar
  18. 18.
    Goldfarb J, Golper TA (1994) Proinflammatory cytokines and hemofiltration membranes. Am Soc Nephrol 5: 228–232Google Scholar
  19. 19.
    Braun N, Giolai M, Rosenfeld S, et al (1993) Clearance of interleukin-6 during continuous veno-venous hemofiltration in patients with septic shock. A prospective, controlled clinical study. J Am Soc Nephrol 4: 336 (Abst)Google Scholar
  20. 20.
    Mariano F, Tetta C, Guida GE, Triolo G, Camussi G (2001) Hemofiltration reduces the priming activity on neutrophil chemiluminescence in septic patients. Kidney Int 60: 15981605Google Scholar
  21. 21.
    Ronco C, Tetta C, Lupi A, et al (1995) Removal of platelet-activating factor in experimental continuous arteriovenous hemofiltration. Crit Care Med 23: 99–107PubMedCrossRefGoogle Scholar
  22. 22.
    Sander A, Armbruster W, Sander B, Daul AE, Lange R, Peters J (1997) Haemofiltration increases IL-6 clearance in early systemic inflammatory response syndrome but does not alter IL-6 and TNF alpha plasma concentrations. Intensive Care Med 23: 878–884PubMedCrossRefGoogle Scholar
  23. 23.
    Heering P, Morgera S, Schmitz FJ, et al (1997) Cytokine removal and cardiovascular hemodynamics in septic patients with continuous venovenous hemofiltration. Intensive Care Med 23: 288–296PubMedCrossRefGoogle Scholar
  24. 24.
    Munoz C, Carlet J, Fitting C, Misset B, Bleriot JP, Cavaillon JM (1991) Dysregulation of in vitro cytokine production by monocytes during sepsis. J Clin Invest 88: 1747–1754PubMedCrossRefGoogle Scholar
  25. 25.
    Ronco C, Brendolan A, Lonnemann G, et al (2002) A randomized cross-over study on couplet plasma filtration with adsorption in septic shock. Crit Care Med (in press)Google Scholar
  26. 26.
    Grootendorst AF, van Bommel EFH, van der Hoven B, van Leengoed LAM, van Osta ALM (1992) High volume hemofiltration improves hemodynamics of endotoxin-induced shock in the pig. J Crit Care 7: 67–75CrossRefGoogle Scholar
  27. 27.
    Grootendorst AF, van Bommel EFH, van der Hoven B, van Leengoed LAM, van Osta ALM (1992) High volume hemofiltration improves right ventricular function of endotoxin-induced shock in the pig. Intensive Care Med 18: 235–240PubMedCrossRefGoogle Scholar
  28. 28.
    Grootendorst AF, van Bommel EFH, van Leengoed LAM, van Zanten AR, Huipen HJ, Groeneveld AB (1993) Infusion of ultrafiltrate from endotoxemic pigs depresses myocardial performance in normal pigs. J Crit Care 8: 161–169PubMedCrossRefGoogle Scholar
  29. 29.
    Grootendorst AF, van Bommel EFH, van Leengoed LAM, Naburus M, Bouman CSC, Groeneveld ABJ (1994) High volume hemofiltration improves hemodynamics and survival of pigs exposed to gut ischemia and reperfusion. Shock 2: 72–78PubMedCrossRefGoogle Scholar
  30. 30.
    Lee PA, Matson JR, Pryor RW, Hinshaw LB (1993) Continuous arteriovenous hemofiltration therapy for staphylococcus aureus-induced septicemia in immature swine. Crit Care Med 21: 914–924PubMedCrossRefGoogle Scholar
  31. 31.
    Rogiers P, Zhang H, Smail N, Auwels D, Vincent JL (1999) Continuous venovenous hemofiltration improves cardiac performance by mechanisms other than tumor necrosis factor-alpha attenuation during endotoxic shock. Crit Care Med 27: 1848–1855PubMedCrossRefGoogle Scholar
  32. 32.
    Yekebas EF, Eisenberger CF, Ohnesorge H, et al (2001) Attenuation of sepsis-related immunoparalysis by continuous veno-venous hemofiltration in experimental porcine pancreatitis. Crit Care Med 29: 1423–1430PubMedCrossRefGoogle Scholar
  33. 33.
    Nagashima M, Shin’oka T, Nollert G, Shum-Tim D, Rader CM, Mayer JE Jr (1998) High-volume continuous hemofiltration during cardiopulmonary bypass attenuates pulmonary dysfunction in neonatal lambs after deep hypothermic circulatory arrest. Circulation 98 (Suppl 19):II378–II384Google Scholar
  34. 34.
    Bellomo R, Kellum JA, Gandhi CR, Pinsky MR (2000) The effect of intensive plasma water exchange by hemofiltration on hemodynamics and soluble mediators in canine endotoxemia. Am J Respir Crit Care Med 161: 1429–1436PubMedCrossRefGoogle Scholar
  35. 35.
    Ronco C, Bellomo R, Homel P, et al (2000) Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet 356: 26–30PubMedCrossRefGoogle Scholar
  36. 36.
    Journois D, Israel Biet D, Pouard P, et al (1996) High-volume, zero-balanced hemofiltration to reduce delayed inflammatory response to cardiopulmonary bypass in children. Anesthesiology 85: 965–976PubMedCrossRefGoogle Scholar
  37. 37.
    Oudemans-van Straaten HM, Bosman RJ, van der Spoe JI, Zandstra DF (1999) Outcome of critically ill patients treated with intermittent high-volume haemofiltration: a prospective cohort analysis. Intensive Care Med 25: 814–821PubMedCrossRefGoogle Scholar
  38. 38.
    Lonnemann G, Bechstein M, Linnenweber S, Burg M, Koch KM (1999) Tumor necrosis factor-alpha during continuous high-flux hemodialysis in sepsis with acute renal failure. Kidney Int 56 (Suppl 72): S84 - S87CrossRefGoogle Scholar
  39. 39.
    Cole L, Bellomo R, Journois D, Davenport P, Baldwin I, Tipping P (2001) High-volume hemofiltration in human septic shock. Intensive Care Med 27: 978–986PubMedCrossRefGoogle Scholar
  40. 40.
    Honore PM, Jamez J, Wauthier M, et al (2000) Prospective evaluation of short-term, high-volume isovolemic hemofiltration on the hemodynamic course and outcome in patients with intractable circulatory failure resulting from septic shock. Crit Care Med 28: 35813587Google Scholar
  41. 41.
    Guth HJ, Zschiesche M, Panzig E, Rudolph PE, Jager B, Kraatz G (1999) Which organic acids does hemofiltrate contain in the presence of acute renal failure? Int J Artif Organs 22: 805–810PubMedGoogle Scholar
  42. 42.
    Barenbrock M, Hausberg M, Matzkies F, de la Motte S, Schaefer RM (2000) Effects of bicarbonate-and lactate-buffered replacement fluids on cardiovascular outcome in CVVH patients. Kidney Int 58: 1751–1757PubMedCrossRefGoogle Scholar
  43. 43.
    Davenport A, Will EJ, Davison AM (1991) Hyperlactatemia and metabolic acidosis during hemofiltration using lactate-buffered fluids. Nephron 59: 461–465PubMedCrossRefGoogle Scholar
  44. 44.
    Sims CA, Wattanasirichaigoon S, Menconi MJ, Ajami AM, Fink MP (2001) Ringer’s ethyl pyruvate solution ameliorates ischemia/reperfusion-induced intestinal mucosal injury in rats. Crit Care Med 29: 1513–1518PubMedCrossRefGoogle Scholar
  45. 45.
    Soriano FG, Liaudet L, Marton A, et al (2001) Inosine improves gut permeability and vascular reactivity in endotoxic shock. Crit Care Med 29: 703–708CrossRefGoogle Scholar
  46. 46.
    Bellomo R, Baldwin I, Cole L, Ronco C (1998) Preliminary experience with high-volume hemofiltration in human septic shock. Kidney Int 53 (Suppl 66): 182–185Google Scholar
  47. 47.
    Lee PA, Weger G, Pryor RW, Matson JR (1998) Effects of filter pore size on efficacy of continuous arteriovenous hemofiltration therapy for staphylococcus aureus-induced septicemia in immature swine. Crit Care Med 26: 730–737PubMedCrossRefGoogle Scholar
  48. 48.
    Kline JA, Gordon BE, Williams C, Blumenthal S, Watts JA, Diaz-Buxo J (1999) Large-pore hemodialysis in acute endotoxin shock. Crit Care Med 27: 588–596PubMedCrossRefGoogle Scholar
  49. 49.
    Morgera S, Buder W, Lehmann C, et al (2000) High cut off membrane haemofiltration in septic patients with multiorgan failure. A preliminary report. Blood Purif 18: 61 (Abst)Google Scholar
  50. High Volume Hemofiltration in Sepsis 141Google Scholar
  51. 50.
    Reeves JH, Butt WW, Shann F, et al (1999) Continuous plasmafiltration in sepsis syndrome. Crit Care Med 27: 2096–2104PubMedCrossRefGoogle Scholar
  52. 51.
    Tetta C, Cavaillon JM, Schulze M, et al (1998) Removal of cytokines and activated complement components in an experimental model of continuous plasma filtration coupled with sorbent adsorption. Nephrol Dial Transplant 13: 1458–1464PubMedCrossRefGoogle Scholar
  53. 52.
    Tetta C, Gianotti L, Cavaillon JM, et al (2000) Coupled plasma filtration-adsorption in a rabbit model of endotoxic shock. Crit Care Med 28: 1526–1533PubMedCrossRefGoogle Scholar
  54. 53.
    Brendolan A, Bellomo R, Tetta C, et al (2001) Coupled plasma filtration adsorption in the treatment of septic shock. Contrib Nephrol 132: 383–390PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • K. Reiter
  • R. Bellomo
  • C. Ronco

There are no affiliations available

Personalised recommendations