Ischemia-reperfusion and Acute Apoptotic Cell Death

  • B. S. Abella
  • L. B. Becker

Abstract

Ischemia, reperfusion, and apoptosis are vital physiological processes that demonstrate fantastic complexity. These processes have stimulated much interest, and even controversy, in part due to the important role they play in determining cell injury and cell death. Both basic scientists and clinicians understand the importance of elucidating these mechanisms. In this chapter, we will discuss the importance of ischemia in human disease, explore the events of reperfusion that may contribute to cell injury following ischemia, review the primary mechanisms of apoptosis, and finally speculate on the mechanisms that link ischemia-reperfusion (I/R) and acute apoptosis.

Keywords

Infarct Size Systemic Inflammatory Response Syndrome Reperfusion Injury Cereb Blood Flow Capillary Leak Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weil MH, Becker LB, Budinger T, et al (2001) Workshop executive summary report: post-resuscitative and initial utility in life saving efforts ( PULSE ). Circulation 103: 1182–1184Google Scholar
  2. 2.
    Parks DA, Granger DN (1986) Contributions of ischemia and reperfusion to mucosal lesion formation. Am J Physiol 250: G749 - G753PubMedGoogle Scholar
  3. 3.
    Hearse DJ, Bolli R (1991) Reperfusion induced injury: manifestations, mechanisms, and clinical relevance. Trends Cardiovasc Med 1: 233–240PubMedCrossRefGoogle Scholar
  4. 4.
    Hearse DJ, Humphrey SM, Chain FB (1973) Abrupt reoxygenation of the anoxic potassium-arrested heart: a study of myocardial enzyme release. J Mol Cell Cardiol 5: 395–407PubMedCrossRefGoogle Scholar
  5. 5.
    Opie LH (1989) Reperfusion injury and its pharmacologic modification. Circulation 80: 1049–1062PubMedCrossRefGoogle Scholar
  6. 6.
    Vanden Hoek TL, Shao Z, Li C, Zak R, Schumacker PT, Becker LB (1996) Reperfusion injury in cardiac myocytes after simulated ischemia. Am J Physiol 270: H1334 - H1341Google Scholar
  7. 7.
    Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT (1998) Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem 273: 18092–18098CrossRefGoogle Scholar
  8. 8.
    Neary P, Redmond HP (1999) Ischaemia-reperfusion injury and the systemic inflammatory response syndrome. In: Grace PA, Mathie RT (eds) Ischemia-Reperfusion Injury. Blackwell Science, London, pp 123–136Google Scholar
  9. 9.
    Thel MC, O’Connor CM (1999) Cardiopulmonary resuscitation: Historical perspective to recent investigations. Am Heart J 137: 39–48Google Scholar
  10. 10.
    Gaul GB, Gruska M, Titscher G, et al (1996) Prediction of survival after out-of-hospital cardiac arrest: results of a community-based study in Vienna. Resuscitation 32: 169–176PubMedCrossRefGoogle Scholar
  11. 11.
    Becker LB, Han BH, Meyer PM, et al (1993) CPR Chicago: Racial differences in the incidence of cardiac arrest and subsequent survival. N Engl J Med 329: 600–606Google Scholar
  12. 12.
    Saklayen M, Liss H, Markert R (1995) In-hospital cardiopulmonary resuscitation survival in one hospital and literature review. Medicine 74: 163–175PubMedCrossRefGoogle Scholar
  13. 13.
    Cooper S, Cade J (1997) Predicting survival, in-hospital cardiac arrests: resuscitation survival variables and training effectiveness. Resuscitation 35: 17–22PubMedCrossRefGoogle Scholar
  14. 14.
    Collard CDS (2001) Pathophysiology, clinical manifestations, and prevention of ischemiareperfusion injury. Anesthesiology 94: 1133–1138PubMedCrossRefGoogle Scholar
  15. 15.
    Ambrosio G, Tritto I (1999) Reperfusion injury: experimental evidence and clinical implications. Am Heart J 138: S69 - S75PubMedCrossRefGoogle Scholar
  16. 16.
    Krammer PH (2000) CD95’s deadly mission in the immune system. Nature 407: 789–795PubMedCrossRefGoogle Scholar
  17. 17.
    Hengartner MO (2000) The biochemistry of apoptosis. Nature 407: 770–776PubMedCrossRefGoogle Scholar
  18. 18.
    Nicholson DW (2000) From bench to clinic with apoptosis-based therapeutic agents. Nature 407: 810–816PubMedCrossRefGoogle Scholar
  19. 19.
    Beekhuizen H, van de GeveI JS (1998) Endothelial cell adhesion molecules in inflammation and postischemic reperfusion injury. Transplant Proc 30: 4251–4256PubMedCrossRefGoogle Scholar
  20. 20.
    Ambrosio G, Flaherty JT, Duilio C, et al (1991) Oxygen radicals generated at reflow induce peroxidation of membrane lipids in reperfused hearts. J Clin Invest 87: 2056–2066PubMedCrossRefGoogle Scholar
  21. 21.
    Zweier JL, Flaherty JT, Weisfeldt ML (1987) Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA 84: 1404–1407PubMedCrossRefGoogle Scholar
  22. 22.
    Ferrari R, Ceconi C, Curello S, et al (1985) Oxygen-mediated myocardial damage during ischaemia and reperfusion: role of the cellular defences against oxygen toxicity. J Mol Cell Cardiol 17: 937–945PubMedCrossRefGoogle Scholar
  23. 23.
    Weinbroum AA, Hochhauser E, Rudick V, et al (1999) Multiple organ dysfunction after remote circulatory arrest: common pathway of radical oxygen species? J Trauma 47: 691–698PubMedCrossRefGoogle Scholar
  24. 24.
    Bolli R, Jeroudi MO, Patel BS, et al (1989) Direct evidence that oxygen-derived free radicals contribute to postischemic myocardial dysfunction in the intact dog. Proc Natl Acad Sci USA 86: 4695–4699PubMedCrossRefGoogle Scholar
  25. 25.
    Romaschin AD, Wilson GJ, Thomas U, Feitler DA, Tumiati L, Mickle DA (1990) Subcellular distribution of peroxidized lipids in myocardial reperfusion injury. Am J Physiol 259: H116 - H123PubMedGoogle Scholar
  26. 26.
    Neumar RW (2000) Molecular mechanisms of ischemic neuronal injury. Ann Emerg Med 36: 483–506PubMedGoogle Scholar
  27. 27.
    Becker LC, Ambrosio G (1987) Myocardial consequences of reperfusion. Prog Cardiovasc Dis 30: 23–41PubMedCrossRefGoogle Scholar
  28. 28.
    Ferreira R, Burgos M, Llesuy S, et al (1989) Reduction of reperfusion injury with mannitol cardioplegia. Ann Thorac Surg 48: 77–83PubMedCrossRefGoogle Scholar
  29. 29.
    Oliver CN, Starke-Reed PE, Stadtman ER, Liu GJ, Carney JM, Floyd RA (1990) Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci USA 87: 5144–5147PubMedCrossRefGoogle Scholar
  30. 30.
    Wang P, Chen H, Qin H, et al (1998) Overexpression of human copper, zinc-superoxide dismutase ( SODI) prevents postischemic injury. Proc Natl Acad Sci USA 95: 4556–4560Google Scholar
  31. 31.
    Maulik N, Yoshida T, Das DK (1999) Regulation of cardiomyocyte apoptosis in ischemic reperfused mouse heart by glutathione peroxidase. Mol Cell Biochem 196: 13–21PubMedCrossRefGoogle Scholar
  32. 32.
    Crack PJ, Taylor JM, Flentjar NJ, et al (2001) Increased infarct size and exacerbated apoptosis in the glutathione peroxidase-1 ( Gpx-I) knockout mouse brain in response to ischemia/ reperfusion injury. J Neurochem 78: 1389–1399Google Scholar
  33. 33.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257PubMedCrossRefGoogle Scholar
  34. 34.
    MacManus JP, Linnik MD (1997) Gene expression induced by cerebral ischemia: an apoptotic perspective. J Cereb Blood Flow Metab 17: 815–832PubMedCrossRefGoogle Scholar
  35. 35.
    Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88: 347–354PubMedCrossRefGoogle Scholar
  36. 36.
    Hamann KJ, Vieira JE, Halayko AJ, et al (2000) Fas cross-linking induces apoptosis in human airway smooth muscle cells. Am J Physiol 278: L618 - L624Google Scholar
  37. 37.
    Tsujimoto Y, Cossman J, Jaffe E, Croce CM (1985) Involvement of the bd-2 gene in human follicular lymphoma. Science 228: 1440–1443PubMedCrossRefGoogle Scholar
  38. 38.
    Zhu W, Cowie A, Wasfy GW, Penn LZ, Leber B, Andrews DW (1996) Bd-2 mutants with restricted subcellular location reveal spatially distinct pathways for apoptosis in different cell types. Embo J 15: 4130–4141PubMedGoogle Scholar
  39. 39.
    Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94: 491–501PubMedCrossRefGoogle Scholar
  40. 40.
    Alnemri ES, Livingston DJ, Nicholson DW, et al (1996) Human ICE/CED-3 protease nomenclature. Cell 87: 171PubMedCrossRefGoogle Scholar
  41. 41.
    Thornberry NA, Rano TA, Peterson EP, et al (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272: 17907–17911Google Scholar
  42. 42.
    Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68: 383–424PubMedCrossRefGoogle Scholar
  43. 43.
    Kothakota S, Azuma T, Reinhard C, et al (1997) Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278: 294–298PubMedCrossRefGoogle Scholar
  44. 44.
    Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6: 1028–1034PubMedCrossRefGoogle Scholar
  45. 45.
    Rudel T, Bokoch GM (1997) Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276: 1571–1574PubMedCrossRefGoogle Scholar
  46. 46.
    Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362: 847–849Google Scholar
  47. 47.
    Bach SP, Renehan AG, Potten CS (2000) Stem cells: the intestinal stem cell as a paradigm. Carcinogenesis 21: 469–476PubMedCrossRefGoogle Scholar
  48. 48.
    Han BH, DeMattos RB, Dugan LL, et al (2001) Clusterin contributes to caspase-3-independent brain injury following neonatal hypoxia-ischemia. Nat Med 7: 338–343PubMedCrossRefGoogle Scholar
  49. 49.
    Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ (1995) Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270: 96–99PubMedCrossRefGoogle Scholar
  50. 50.
    Asahi M, Hoshimaru M, Uemura Y, et al (1997) Expression of interleukin-1 beta converting enzyme gene family and bd-2 gene family in the rat brain following permanent occlusion of the middle cerebral artery. J Cereb Blood Flow Metab 17: 11–18PubMedCrossRefGoogle Scholar
  51. 51.
    Chen J, Graham SH, Nakayama M, et al (1997) Apoptosis repressor genes Bd-2 and Bd-xlong are expressed in the rat brain following global ischemia. J Cereb Blood Flow Metab 17: 2–10PubMedCrossRefGoogle Scholar
  52. 52.
    Gobe G, Zhang XJ, Cuttle L, et al (1999) Bd-2 genes and growth factors in the pathology of ischaemic acute renal failure. Immunol Cell Biol 77: 279–286PubMedCrossRefGoogle Scholar
  53. 53.
    Xu M, Wang Y, Ayub A, Ashraf M (2001) Mitochondrial K(ATP) channel activation reduces anoxic injury by restoring mitochondrial membrane potential. Am J Physiol 281:H1295-H 1303Google Scholar
  54. 54.
    Shiraishi J, Tatsumi T, Keira N, et al (2001) Important role of energy-dependent mitochondrial pathways in cultured rat cardiac myocyte apoptosis. Am J Physiol 281: H1637 - H1647Google Scholar
  55. 55.
    Gil-Ad I, Shtaif B, Luria D, Karp L, Fridman Y, Weizman A (1999) Insulin-like-growth-factor-I ( IGF-I) antagonizes apoptosis induced by serum deficiency and doxorubicin in neuronal cell culture. Growth Horm IGF Res 9: 458–464Google Scholar
  56. 56.
    Loddick SA, MacKenzie A, Rothwell NJ (1996) An ICE inhibitor, z-VAD-DCB attenuates ischaemic brain damage in the rat. Neuroreport 7: 1645–1658CrossRefGoogle Scholar
  57. 57.
    Armstrong RC, Li F, Smiley R, et al (2001) Caspase inhibitors reduce infarct size when dosed post-reperfusion in a rodent cardiac ischemia/reperfusion model. Circulation 104 (Suppl):II-12 (Abst)Google Scholar
  58. 58.
    Peng CF, Lee P, Deguzman A, et al (2001) Multiple independent mutations in apoptotic signaling pathways markedly decrease infarct size due to myocardial ischemia-reperfusion. Circulation 104 (Suppl):II-187 (Abst)Google Scholar
  59. 59.
    Tekin D, Gursoy E, Xi L, Kukreja R (2001) Genetic disruption of Fas receptor or Fas ligand reduces myocardial apoptosis, but not infarct size caused by ischemia/perfusion injury. Circulation 104 (Suppl): 11–12Google Scholar
  60. 60.
    Chien CT, Lee PH, Chen CF, Ma MC, Lai MK, Hsu SM (2001) De novo demonstration and co-localization of free-radical production and apoptosis formation in rat kidney subjected to ischemia/reperfusion. J Am Soc Nephrol 12: 973–982PubMedGoogle Scholar
  61. 61.
    Marchetti P, Decaudin D, Macho A, et al (1997) Redox regulation of apoptosis: impact of thiol oxidation status on mitochondrial function. Eur J Immunol 27: 289–296PubMedCrossRefGoogle Scholar
  62. 62.
    Deng X, Cadet JL (2000) Methamphetamine-induced apoptosis is attenuated in the striata of copper-zinc superoxide dismutase transgenic mice. Brain Res Mol Brain Res 83: 121–124PubMedCrossRefGoogle Scholar
  63. 63.
    Felderhoff-Mueser U, Taylor DL, Greenwood K, et al (2000) Fas/CD95/APO-1 can function as a death receptor for neuronal cells in vitro and in vivo and is upregulated following cerebral hypoxic-ischemic injury to the developing rat brain. Brain Pathol 10: 17–29PubMedCrossRefGoogle Scholar
  64. 64.
    Assaly R, Olson D, Hammersley J, et al (2001) Initial evidence of endothelial cell apoptosis as a mechanism of systemic capillary leak syndrome. Chest 120: 1301–1308PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • B. S. Abella
  • L. B. Becker

There are no affiliations available

Personalised recommendations