Skip to main content

Clinical Applications of Indirect Calorimetry in the Intensive Care Setting

  • Conference paper
Intensive Care Medicine

Abstract

Metabolic stress, a result of the rapidly changing and complex nature of severe illness, is common in critically ill patients. Although the importance of nutritional support has received increasing interest over recent years, this is usually provided in an empiric manner without necessarily taking into account the specific nutritional and, especially, energy requirements of a particular patient. These factors may be of considerable importance to patients in the intensive care unit (ICU). Under-nutrition, as indicated by a severely negative energy balance (>10000 kCal during the ICU stay) has been associated with a higher mortality in critically ill patients at risk for developing multiple organ failure (MOF) [1], while over-nutrition in artificially-fed patients especially with carbohydrates may increase postoperative length of stay, increase rates of infection and mortality [2]. It would, therefore, seem that an accurate daily and individualized evaluation of energy expenditure would be the best way to administer appropriate energy support in these metabolically brittle patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barlett RH, Dechert RE, Mault JR, Ferguson SK, Kaiser AM, Erlandson EE (1982) Measurement of metabolism in multiple organ failure. Surgery 10: 771–779

    Google Scholar 

  2. Vo NM, Waycaster M, Acuff RV, Lefemine AA (1987) Effects of postoperative carbohydrate overfeeding. Am Surg 53: 632–635

    PubMed  CAS  Google Scholar 

  3. van Lanschot JJB, Feenstra BWA, Vermeij CG, Bruining HA (1986) Calculation versus measurement of total energy expenditure. Crit Care Med 14: 981–985

    Article  PubMed  Google Scholar 

  4. Flancbaum L, Choban PS, Sambucco S, Verducci J, Burge JC (1999) Comparison of indirect calorimetry, the Fick method, and predictive equations in estimating the energy requirements of critically ill patients. Am J Clin Nutr 69: 461–466

    PubMed  CAS  Google Scholar 

  5. Coss-Bu JA, Jefferson LS, Walding D, David Y, Smith EO, Klish WJ (1998) Resting energy expenditure in children in a pediatric intensive care unit: comparison of Harris-Benedict andTalbot predictions with indirect calorimetry values. Am J Clin Nutr 67: 74–80

    PubMed  CAS  Google Scholar 

  6. Casati A, Colombo S, Leggieri C, Muttini S, Capocasa T, Gallioli G (1996) Measured versus calculated energy expenditure in pressure support ventilated ICU patients. Minerva Anesthesiol 62: 165–170

    CAS  Google Scholar 

  7. McClave SA, Snider HL, Greene L, et al (1992) Effective utilization of indirect calorimetry during critical care. Nut Pract 9: 61–68

    Google Scholar 

  8. Singer P (1989) Measurement or estimation of energy Expenditure. In: Bursztein S, Elwyn DH, Askanazy J, Kinney JM (eds) Energy Metabolism, Indirect Calorimetry and Nutrition, 1st ed. Williams & Wilkins, Baltimore, pp 241–249

    Google Scholar 

  9. Verhoeven JJ, Hazelzet JA, van der Voort, Joosten KF (1998) Comparison of measured and predicted energy expenditure in mechanically ventilated children. Intensive Care Med 24: 464–468

    Google Scholar 

  10. Weissman C, Kemper M (1996) Metabolic measurements in the critically ill. Crit Care Clin 11: 169–197

    Google Scholar 

  11. Bursztein S (1989) The theoretical framework. In: Bursztein S, Elwyn DH, Askanazi J, Kinney JM (eds) Energy Metabolism, Indirect Calorimetry and Nutrition. Williams & Wilkins, Baltimore, pp 27–83

    Google Scholar 

  12. Bursztein S, Saphar P, Singer P, Elwyn DH (1989) A mathematical analysis of indirect calorimetry measurements in acutely ill patients. Am J Clin Nutr 50: 227–230

    PubMed  CAS  Google Scholar 

  13. Brandi LS, Grana M, Mazzanti T, Giunta F, Natali A, Ferrannini E (1992) Energy expenditure and gas exchange measurement in postoperative patients: thermodilution vs indirect caloriemtry. Crit Care Med 20: 1273–1283

    Article  PubMed  CAS  Google Scholar 

  14. McClave SA, Snider HL (1992) Use of indirect calorimetry in clinical nutrition. Nutr Clin Pract 7: 207–221

    Article  PubMed  CAS  Google Scholar 

  15. Frankenfield DC, Wiles CE, Bagley S, Siegel JH (1994) Relationship between resting and total energy expenditure in injured and septic patients. Crit Care Med 22: 1796–1801

    PubMed  CAS  Google Scholar 

  16. Weissman C, Kemper M, Elwyn DH, Askanazi J, Hyman AI, Kinney JM (1986) The energy expenditure of the mechanically ventilated critically ill patient: an analysis. Chest 89: 254–259

    Article  PubMed  CAS  Google Scholar 

  17. Smyrnios NA, Curley FJ, Shaker KG (1997) Accuracy of 30-minute indirect calorimetry studies in predicting 24-hour energy expenditure in mechanically ventilated critically ill patients. JPEN J Parenter Enteral Nutr 21: 168–174

    Article  PubMed  CAS  Google Scholar 

  18. Petros S, Engelmann L (2001) Validity of an abbreviated indirect calorimetry protocol for measurement of resting energy expenditure in mechanically ventilated and spontaneously breathing critically ill patients. Intensive Care Med 27: 1107–1109

    Article  Google Scholar 

  19. Bracco D, Chiolero R, Pasche O, Revelly P (1995) Failure in measuring gas exchange in the ICU. Chest 104: 1406–1410

    Article  Google Scholar 

  20. Ultman J, Bursztein S (1981) Analysis of error in the determination of respiratory gas exchange at varying FIO2. J Appl Physiol 50: 210–216

    PubMed  CAS  Google Scholar 

  21. Tissot S, Delafosse B, Bernard O, Bouffard Y, Viale JP, Annat G (1995) Clinical validation of the Deltatrac monitoring system in mechanically ventilated patients. Crit Care Med 21: 149–153

    CAS  Google Scholar 

  22. Browning JA, Linberg SE, Turney SF, Chodoff P (1982) The effects of fluctuating FIO2 on metabolic measurements in mechanically ventilated patients. Crit Care Med 10: 82–85

    Article  PubMed  CAS  Google Scholar 

  23. Henneberg S, Soderberg D, Groth T, Stjernsrom H, Wiklund L (1987) Carbon dioxide production during mechanical ventrilation. Crit Care Med 15: 8–13

    Article  PubMed  CAS  Google Scholar 

  24. Mc Lellan S, Walsh T, Burdess A, Lee A (2002) Comparison between the Datex-Ohmeda MCOVX metabolic monitor and the Deltatrac II in mechanically ventilated patients. Intensive Care Med 28: 870–876

    Article  Google Scholar 

  25. Bruder N, Raynal M, Pellisier D, Courtinat C, Francois G (1998) Influence of body temperature, with or without sedation, on energy expenditure in severe head-injured patients. Crit Care Med 26: 568–572

    Article  PubMed  CAS  Google Scholar 

  26. Just B, Delva E, Camus Y, Lienhard A (1992) Oxygen uptake during recovery following naloxone. Relationship with intraoperative heat loss. Anesthesiology 76: 60–64

    Article  PubMed  CAS  Google Scholar 

  27. Benoventura J, Pittoni G, Michielan F, et al (1995) Energy expenditure (EE) and substrate utilization (SU) in the perioperative period in orthotopic live transplantation. Rocz Akad Med Bialymst 40: 195–208

    Google Scholar 

  28. Hart DW, Wolf SE, Chinkes DL, Lal SO, Ramzy PI, Herndon DN (2002) Beta-blockade and growth hormone after Burn. Ann Surg 236: 450–457

    Article  PubMed  Google Scholar 

  29. Green CJ, Frazer RS, Underhill S, Maycock P, Fairhurst JA, Campbell IT (1992) Metabolic effects of dobutamine in normal man. Clin Sci 82: 77–83

    PubMed  CAS  Google Scholar 

  30. Schaffartzik W, Sanft C, Scharfer JH, Spies C (2000) Different dosages of dobutamine in septic shock patients: determining oxygen consumption with a metabolic monitor integrated in a ventilator. Intensive Care Med 26: 1719–1722

    Article  Google Scholar 

  31. Pelaez Fernandez J, Asensio Martin MJ, Sanchez Sanchez M, Garcia de Lorenzo Mateos A, Jimenez Lendinez M (1999) Non-metabolic application of indirect calorimetry. Nutr Hosp 14: 23–30

    Google Scholar 

  32. Talpers SS, Romberger DJ, Gunce SB, Pingleton SK (1992) Nutritional associated increased carbon dioxide production: excess total calories vs high proportion of carbohydrate calories. Chest 102: 551–555

    Article  PubMed  CAS  Google Scholar 

  33. Moriyama S, Okamoto K, Tabira Y, et al (1999) Evaluation of oxygen consumption and resting energy expenditure in critically ill patients with systemic inflammatory response syndrome. Crit Care Med 27: 2133–2136

    Article  PubMed  CAS  Google Scholar 

  34. Kreymann G, Grosser S, Buggisch P, Gottschall C, Matthaei S, Grten H (1993) Oxygen consumption and resting metabolic rate in sepsis, sepsis syndrome and septic shock. Crit Care Med 21: 1012–1019

    Article  PubMed  CAS  Google Scholar 

  35. Forsberg E, Soop M, Thorne A (1991) Energy expenditure and outcome in patients with multiple organ failure following abdominal injury. Intensive Care Med 17: 403–409

    Article  PubMed  CAS  Google Scholar 

  36. Hart DW, Wolf SE, Herndon DN, et al (2002) Energy expenditure and caloric balance after burn: increased feeding leads to fat rather than lean mass accretion. Ann Surg 235: 152–161

    Article  PubMed  Google Scholar 

  37. Kelly KM (1996) Does increasing oxygen delivery improve outcome? Yes. Crit Care Clin 12: 635–644

    Article  PubMed  CAS  Google Scholar 

  38. Schaffartzik W, Sanft C, Schaefer JH, Spies C (2000) Different dosages of dobutamine in septic shock patients: determining oxygen consumption with a metabolic monitor integrated in a ventilator. Intensive Care Med 26: 1740–1746

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Singer, P., Cohen, J.D. (2003). Clinical Applications of Indirect Calorimetry in the Intensive Care Setting. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5548-0_84

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5548-0_84

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5550-3

  • Online ISBN: 978-1-4757-5548-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics