Positron Emission Tomography: Anticipated Usefulness in Critical Care Settings

  • F. Lamontagne
  • F. Bénard
  • O. Lesur
Conference paper


Intensive care has progressed continuously over the past decades with the emergence of technologies and knowledge aimed at better supporting critically ill patients. Insults which, in the past, were considered nearly always fatal are nowadays frequently warded off. However, this reality has also complicated the practice of critical care in two different respects: First, in yielding new pathological entities, the most important being multiple organ dysfunction syndrome (MODS). MODS is now the leading cause of death in the intensive care unit (ICU) with a mortality rate approaching 100% when dysfunction is severe and a large number of organs have been affected [1]. Second, patients often present very complicated clinical pictures, each element potential of being at the same time the consequence and the cause of the next. For example, coagulopathy can either be the cause or the effect of postoperative bleeding, and pulmonary insufficiency either the cause or the effect of cardiac failure. Added to the fact that critically ill patients are seldom able to contribute adequately to physical examination, the intensivist is faced with problematic clinical challenges and a relative paucity of effective paraclinical tools.


Positron Emission Tomography Myocardial Blood Flow Multiple Organ Dysfunction Syndrome Minimal Hepatic Encephalopathy Oxygen Extraction Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marshall JC, Cook DJ, Christou NV, Bernard GR, Sprung CL, Sibbald W (1995) Multiple organ dysfunction score: a reliable descriptor of a complex outcome. Crit Care Med 23: 1638–1652PubMedCrossRefGoogle Scholar
  2. 2.
    Papathanassoglou ED, Moynihan JA, Ackerman MH (2000) Does programmed cell death play a role in the development of multiple organ dysfunction in critically ill patients? A review and a theoretical framework. Crit Care Med 28: 537–549PubMedCrossRefGoogle Scholar
  3. 3.
    Fink MP, Evans TW (2002) Mechanisms of organ dysfunction in critical illness: report from a round table conference held in Brussels. Intensive Care Med 28: 369–375PubMedCrossRefGoogle Scholar
  4. 4.
    Marshall JC (2001) Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med 29 (7 suppl): 599–5106Google Scholar
  5. 5.
    Thrall JH, Ziessman HA (2001) Single-photon emission computed tomography and positron emission tomography. In: Nuclear medicine: The Requisites, 2nd ed. Mosby, St-Louis, pp 33–47Google Scholar
  6. 6.
    Bergmann SR, Fox KA, Rand AL (1984) Quantification of regional myocardial blood flow in vivo with H2150. Circulation 70: 724–733PubMedCrossRefGoogle Scholar
  7. 7.
    Walsh MN, Geltman EM, Steele RL, et al (1990) Augmented myocardial perfusion reserve after coronary angioplasty quantified by positron emission tomography with H215O. J Am Coll Cardiol 15: 119–127PubMedCrossRefGoogle Scholar
  8. 8.
    Bergmann SR, Herrero P, Markham J, Weinhemer CJ, Walsh MN (1989) Noninvasive quantification of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol 14: 639–652PubMedCrossRefGoogle Scholar
  9. 9.
    Ter-Pogossian MM, Herscovitch P (1985) Radioactive oxygen-15 in the study of cerebral blood flow, blood volume, and metabolism. Semin Nucl Med 15: 377–394PubMedCrossRefGoogle Scholar
  10. 10.
    Bergmann SR (1997) Clinical applications of myocardial perfusion assessments made with oxygen-15 water and positron emission tomography. Cardiology 88: 71–79PubMedCrossRefGoogle Scholar
  11. 11.
    Hutchins GD, Schaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE (1990) Non invasive quantification of regional blood flow in the human heart using 13N ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 15: 1032–1042PubMedCrossRefGoogle Scholar
  12. 12.
    Muzik 0, Beanlands RSB, Hutchins GD, Mangner TJ, Nguyen N, Schwaiger M (1993) Validation of Nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET. J Nucl Med 34: 83–91PubMedGoogle Scholar
  13. 13.
    Bellina CR, Parodi O, Camici P, et al (1990) Simultaneaous in vitro and in vivo validation of nitrogen-13-ammonia for the assessment of regional myocardial blood flow. J Nucl Med 31: 1335–1343PubMedGoogle Scholar
  14. 14.
    Bol A, Melin JA, Vanoverschelde JL, et al (1993) Direct comparison of 13N ammonia and 150 water estimates of perfusion with quantification of regional myocardial blood flow by microspheres. Circulation 87: 512–525PubMedCrossRefGoogle Scholar
  15. 15.
    Nitzsche EU, Choi Y, Czernin J, Hoh CK, Huang S-C, Schelbert HR (1996) Noninvasive quantification of myocardial blood flow in humans. Circulation 93: 2000–2006PubMedCrossRefGoogle Scholar
  16. 16.
    Armbrecht JJ, Buxton DB, Schelbert HR (1989) Validation of 11C acetate as a tracer for noninvasive assessment of oxidative metabolism with positron emission tomography in normal, ischemic, postischemic, and hyperemic canine myocardium Circulation 81: 1594 1605Google Scholar
  17. 17.
    Brown MA, Myears DW, Bergmann SR (1989) Validity of estimates of myocardial oxidative metabolism with 11C acetate and positron emission tomography despite altered patterns of substrate utilization. J Nucl Med 30: 187–193PubMedGoogle Scholar
  18. 18.
    Buxton DB, Nienaber CA, Luxen A, et al (1989) quantification of regional myocardial oxygen consumption in vivo with 11C acetate and dynamic positron emission tomography. Circulation 79: 134–142Google Scholar
  19. 19.
    Ukkonen H, Knuuti J, Katoh C, et al (2001) Use of 11C and 1502 PET for the assessment of myocardial oxygen utilization in patients with chronic myocardial infarction. Eur J Nucl Med 28: 334–339PubMedCrossRefGoogle Scholar
  20. 20.
    Klein LJ, Visser FC, Knaapen P, et al (2001) Carbon-11 acetate as a tracer of myocardial oxygen consumption. Eur J Nucl Med 28: 651–668PubMedCrossRefGoogle Scholar
  21. 21.
    Porenta G, Cherry S, Czernin J, et al (1999) Noninvasive determination of myocardial blood flow, oxygen consumption and efficiency in normal humans by carbon-11 acetate positron emission tomography imaging. Eur J Nucl Med 26: 1465–1574PubMedCrossRefGoogle Scholar
  22. 22.
    Sciacca RR, Akinboboye O, Chou RL, Epstein S, Bergmann SR (2000) Measurement of myocardial blood flow with PET using 11C acetate. J Nucl Med 42: 63–70Google Scholar
  23. 23.
    Sun KT, Yeatman LA, Buxton DB, et al (1998) Simultaneaous measurement of myocardial oxygen consumption and blood flow using carbon-11 acetate. J Nucl Med 39: 272–280PubMedGoogle Scholar
  24. 24.
    Chan SY, Brunken RC, Phelps ME, Schelbert HR (1991) Use of the metabolic tracer carbon-11-acetate for evaluation of regional myocardial perfusion. J Nucl Med 32: 665–672PubMedGoogle Scholar
  25. 25.
    Gropler RJ, Siegel BA, Geltman EM (1991) Myocardial uptake of carbon-11-acetate as an indirect estimate of regional myocardial blood flow. J Nud Med 32: 245–251Google Scholar
  26. 26.
    Raichle ME, Grubb RL, Eichling JO, et al (1976) Measurement of brain oxygen utilization with radiotracer oxygen-15. Experimental verification. J Appl Physiol 40: 638–640PubMedGoogle Scholar
  27. 27.
    Frakowiak RSJ, Lenzi GL, Jones T, et al (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 0–15 and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr 4: 727–736CrossRefGoogle Scholar
  28. 28.
    Yamamoto Y, de Silva R, Rhodes C, et al (1996) Ventricular hypertrophy, congestive heart failure, metabolism: noninvasive quantification of regional myocardial metabolic rate for oxygen by use of 1502 inhalation and positron emission tomography: experimental validation. Circulation 94: 808–816PubMedCrossRefGoogle Scholar
  29. 29.
    Okazawa H, Yamauchi H, Sugimoto K, et al (2001) Quantitative comparison of the bolus and steady-state methods for measurement of cerebral perfusion and oxygen metabolism: positron emission tomography study using 150-gas and water. J Cereb Blood Flow Metab 21: 793–803PubMedCrossRefGoogle Scholar
  30. 30.
    Yamaki T, Imahori Y, Ohmori Y, et al (1996) Cerebral hemodynamics and metabolism of severe diffuse brain injury measured by PET. J Nucl Med 37: 1166–1170PubMedGoogle Scholar
  31. 31.
    Ishii K, Sasaki M, Kitagaki H, Sakamoto S, Yamaji S, Maeda K (1996) Regional difference in cerebral blood flow and oxidative metabolism in human cortex. J Nucl Med 37: 10861088Google Scholar
  32. 32.
    Silveramn DH, Small GW, Chang CY, et al (2001) Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA 286: 2120–2127CrossRefGoogle Scholar
  33. 33.
    Tillisch J, Brunken R, Marshall R, et al (1986) Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 314: 884–888PubMedCrossRefGoogle Scholar
  34. 34.
    Tamaki N, Yonekura Y, Yamashita K, et al (1989) Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol 64: 860–865PubMedCrossRefGoogle Scholar
  35. 35.
    Gerber B, Vanoverschelde J-L, Bol A, et al (1996) Coronary heart disease, myocardial infarction, thrombolytic agents: myocardial blood flow, glucose uptake, and recruitment of inotropic reserve in chronic left ventriculat ischemic dysfunction: implications for the pathophysiology of chronic myocardial hibernation. Circulation 94: 651–659PubMedCrossRefGoogle Scholar
  36. 36.
    Lucignani G, Paolini G, Landoni C, et al (1992) Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methoxyisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease. Eur J Nucl Med 19: 874–881PubMedCrossRefGoogle Scholar
  37. 37.
    Knuuti MJ, Saraste M, Nuutila P, et al (1994) Myocardial viability: fluorine-18-deoxyglucose positron emission tomography in prediction of wall motion recovery after revascularization. Am Heart J 127: 785–796PubMedCrossRefGoogle Scholar
  38. 38.
    Fujibayashi Y, Cutler CS, Anderson CJ, et al (1999) Comparative studies of Cu-64-ATSM and C-11-acetate in an acute myocardial infarction model: ex vivo imaging of hypoxia in rats. Nuc Med Biol 26: 117–121CrossRefGoogle Scholar
  39. 39.
    Fujibayashi Y, Taniuchi H, Yonekura Y, Ohtani H, Konishi J, Yokoyama A (1997) Copper62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med 38: 1155–1160PubMedGoogle Scholar
  40. 40.
    Lockwood AH, Yap EWH, Wong W-H (1991) Cerebral ammonia metabolism in patients with severe liver disease and minimal hepatic encephalopathy. J Cereb Blood Flow Metab 11: 337–341PubMedCrossRefGoogle Scholar
  41. 41.
    Narula J, Acio ER, Narula N, et al (2001) Annexin-V imaging for noninvasive detection of cardiac allograft rejection. Nature Med 7: 1347–1352PubMedCrossRefGoogle Scholar
  42. 42.
    Dumont EA, Reutelingsperger CPM, Smits JFM, et al (2001) Real-time imaging of apoptotic cell-membrane changes at the single-cell level in the beating murine heart. Nature Med 7: 1352–1355PubMedCrossRefGoogle Scholar
  43. 43.
    Reutelingsperger CPM, Dumont E, Thimister PW, et al (2002) Visualization of cell death in vivo with the annexin A5 imaging protocol. J Immunol Meth 265: 123–132CrossRefGoogle Scholar
  44. 44.
    Balnkenberg FG, Tait J, Ohtsuki K, Strauss HW (200) Apoptosis: the importance of nuclear medicine, Nucl Med Commun 21: 241–250Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • F. Lamontagne
  • F. Bénard
  • O. Lesur

There are no affiliations available

Personalised recommendations