Skip to main content

Microarray Technology in Sepsis: Tool or Toy?

  • Conference paper
  • 330 Accesses

Abstract

Sepsis is a result of highly heterogeneous processes characterized by an involvement of multiple components and their interactions at each organizational level of the human body: genes, cells, tissues, organs. The complexity of the underlying biological and immunological processes has encouraged multiple types of research studies comprising a broad panel of clinical aspects. One of the lessons learned to date is that evaluation of new sepsis therapies has been hampered by fairly unspecific, clinically-based inclusion criteria which insufficiently reflect the molecular mechanisms [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vincent JL, Angus D, Annane D, et al (2001) Clinical expert round table discussion (session 5) at the Margaux Conference on Critical Illness: outcomes of clinical trials in sepsis: lessons learned. Crit Care Med 29: S136–137

    Article  PubMed  CAS  Google Scholar 

  2. Southern EM (1974) An improved method for transferring nucleotides from electrophoresis strips to thin layers of ion-exchange cellulose. Anal Biochem 62: 317–318

    Article  PubMed  CAS  Google Scholar 

  3. Gillespie D, Spiegelman S (1965) A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol 12: 829–842

    Article  PubMed  CAS  Google Scholar 

  4. Lennon GG, Lehrach H (1991) Hybridization analyses of arrayed cDNA libraries. Trends Genet 7: 314–317

    PubMed  CAS  Google Scholar 

  5. Kafatos FC, Jones CW, Efstratiadis A (1979) Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucl Acid Res 7: 15411552

    Google Scholar 

  6. Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251: 767–773

    Article  PubMed  CAS  Google Scholar 

  7. Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SP (1994) Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Nail Acad Sci USA 91: 50225026

    Google Scholar 

  8. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470

    Article  PubMed  CAS  Google Scholar 

  9. Edman CF, Raymond DE, Wu DJ, et al (1997) Electric field directed nucleic acid hybridization on microchips. Nucleic Acid Res 25: 4907–4914

    Article  PubMed  CAS  Google Scholar 

  10. Gray DE, Case-Green SC, Fell TS, Dobson PJ, Southern EM (1997) Ellipsometric and interferometric characterization of DNA probes immobilised on a combinatorial array. Langmuir 13: 2833–2842

    Article  CAS  Google Scholar 

  11. Ferguson JA, Boles TC, Adams CP, Walt DR (1996) A fiber-optic DNA biosensor microarray for the analysis of gene expression. Nat Biotechnol 14: 1681–1684

    Article  PubMed  CAS  Google Scholar 

  12. Michael KL, Taylor LC, Schultz SL, Walt DR (1998) Randomly ordered addressable high-density optical sensor arrays. Anal Chem 70: 1242–1248

    Article  PubMed  CAS  Google Scholar 

  13. Walt DR (2000) Bead-based fiber-optic arrays. Science 287: 451–452

    Article  PubMed  CAS  Google Scholar 

  14. Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and DNA arrays. Nature 405: 827–836

    Article  PubMed  CAS  Google Scholar 

  15. Wu W, Wildsmith SE, Winkley AJ, Yallop R, Elcock FJ, Bugelski PJ (2001) Chemometric strategies for normalization of gene expression data obtained from cDNA microarrays. Analytica Chimica Acta 446: 451–466

    Article  CAS  Google Scholar 

  16. Golub TR, Slonim DK, Tamayo P, et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286: 531–537

    Article  PubMed  CAS  Google Scholar 

  17. Alizadeh AA, Eisen MB, Davis RE, et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403: 503–511

    Article  PubMed  CAS  Google Scholar 

  18. Varambally S, Dhanasekaran SM, Zhou M, et al (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419: 624–629

    Article  PubMed  CAS  Google Scholar 

  19. Bakay M, Chen Y-W, Borup R, Zhao P, Nagaraju K, Hoffman EP (2002) Sources of variability and effect of experimental approach on expression profiling data interpretation. BMC Bioinformatics 3: 4

    Article  PubMed  Google Scholar 

  20. Joyce DE, Gelbert L, Ciaccia A, DeHoff B, Grinnell BW (2001) Gene expression profile of antithrombotic protein c defines new mechanisms modulating inflammation and apoptosis. J Biol Chem 276: 11199–11203

    Article  PubMed  CAS  Google Scholar 

  21. Fillion I, Ouellet N, Simard M, Bergeron Y, Sato S, Bergeron MG (2001) Role of chemokines and formyl peptides in pneumococcal pneumonia-induced monocyte/macrophage recruitment. J Immunol 166: 7353–7361

    PubMed  CAS  Google Scholar 

  22. Zhao B, Bowden RA, Stavchansky SA, Bowman PD (2001) Human endothelial cell response to gram-negative lipopolysaccharide assessed with cDNA microarrays. Am J Physiol Cell Physiol 281: C1587 - C1595

    PubMed  CAS  Google Scholar 

  23. Chinnaiyan AM, Huber-Lang M, Kumar-Sinha C, et al (2001) Molecular signatures of sepsis. Multiorgan gene expression profiles of systemic inflammation. Am J Pal:hol 15: 11991209

    Google Scholar 

  24. Drmanac S, Kita D, Labat I, et al (1998) Accurate sequencing by hybridization for DNA diagnostics and individual genomics. Nat Biotechnol 16: 54–58

    Article  PubMed  CAS  Google Scholar 

  25. Cargill M, Altshuler D, Ireland J, et al (1999) Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 22: 231–238

    Article  PubMed  CAS  Google Scholar 

  26. Vincent JL, Angus D, Annane D, et al (2001) Clinical expert round table discussion (session 5) at the Margaux Conference on Critical Illness: outcomes of clinical trials in sepsis: lessons learned. Crit Care Med 29: S136 - 137

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Russwurm, S., Deigner, H.P., Reinhart, K. (2003). Microarray Technology in Sepsis: Tool or Toy?. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5548-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5548-0_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5550-3

  • Online ISBN: 978-1-4757-5548-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics