Ethyl Pyruvate: A Novel Anti-inflammatory Agent

  • M. P. Fink
Conference paper


Pyruvate, CH3COCOO, plays a central role in intermediary metabolism, being the final product of glycolysis and the starting substrate for the tricarboxylic acid (TCA) cycle. Pyruvate probably also functions in cells as an endogenous antioxidant [1–3]. The capacity of pyruvate to function as an antioxidant was first described in 1904 by Holleman, who showed that simple aliphatic a-keto carboxylates reduce hydrogen peroxide (H2O2) nonenzymatically in a reaction that yields carbon dioxide and water [4]. In the case of pyruvate, this reaction is both rapid and stoichiometric [5–7].


Hemorrhagic Shock Sesquiterpene Lactone Ethyl Pyruvate Methyl Pyruvate Pyruvic Acid Methyl Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O’Donnell-Tormey J, Nathan CF, Lanks K, DeBois CJ, de la Harpe J (1987) Secretion of pyruvate. An antioxidant defense of mammalian cells. J Exp Med 165: 500–514PubMedCrossRefGoogle Scholar
  2. 2.
    Brand KA (1997) Aerobic glycolysis by proliferating cells: protection against oxidative stress at the expense of energy yield. J Bioenerg Biomembr 29: 355–364PubMedCrossRefGoogle Scholar
  3. 3.
    Brand KA, Hermfisse U (1997) Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB J 11: 388–395PubMedGoogle Scholar
  4. 4.
    Holleman MAF (1904) Notice sur l’action de l’eau oxygénée sur les acétoniques et sur le dicétones 1.2. Red Tray Chim Pays-bas Belg 23: 169–171CrossRefGoogle Scholar
  5. 5.
    Adickes F, Andresen G (1943) Zur kenntnis der reihe der normalen aliphatischen ß-oxysauren und der a-ketosauren. Ann Chem 50: 41–57Google Scholar
  6. 6.
    Bunton CA (1949) Oxidation of a-diketones and a-keto-acids by hydrogen peroxide. Nature 163: 144CrossRefGoogle Scholar
  7. 7.
    Melzer E, Schmidt H (1988) Carbon isotope effects on the decarboxylation of carboxylic acids. Biochem J 252: 913–915PubMedGoogle Scholar
  8. 8.
    Salahudeen AK, Clark EC, Nath KA (1991) Hydrogen peroxide-induced renal injury. A protective role for pyruvate in vitro and in vivo. J Clin Invest 88: 1886–1893Google Scholar
  9. 9.
    Bunger R, Mallet RT, Hartman DA (1989) Pyruvate-enhanced phosphorylation potential and inotropism in normoxic and postischemic isolated working heart. Near-complete prevention of reperfusion contractile failure. Eur J Biochem 180: 221–233Google Scholar
  10. 10.
    Cicalese L, Lee K, Schraut W, Watkins S, Borle A, Stanko R (1999) Pyruvate prevents ischemia-reperfusion mucosal injury of rat small intestine. Am J Surg 171: 97–100CrossRefGoogle Scholar
  11. 11.
    Sileri P, Schena S, Morini S, et al (2001) Pyruvate inhibits hepatic ischemia-reperfusion injury in rats. Transplantation 72: 27–30PubMedCrossRefGoogle Scholar
  12. 12.
    Gupta SK, Mohanty I, Trivedi D, Tandon R, Srivastava S, Joshi S (2002) Pyruvate inhibits galactosemic changes in cultured cat lens epithelial cells. Ophthalmic Res 34: 23–28PubMedCrossRefGoogle Scholar
  13. 13.
    Zhao W, Devamanoharan PS, Henein M, Ali AH, Varma SD (2000) Diabetes-induced biochemical changes in rat lens: attenuation of cataractogenesis by pyruvate. Diabetes Obes Metab 2: 165–174PubMedCrossRefGoogle Scholar
  14. 14.
    Lee JY, Kim YH, Koh JY (2001) Protection by pyruvate against transient forebrain ischemia in rats. J Neurosci 21: 1–6Google Scholar
  15. 15.
    Slovin PN, Huang CJ, Cade JR, et al (2001) Sodium pyruvate is better than sodium chloride as a resuscitation solution in a rodent model of profound hemorrhagic shock. Resuscitation 50: 109–115PubMedCrossRefGoogle Scholar
  16. 16.
    Varma SD, Devamanoharan PS, Rutzen AR, Ali AH, Henein M (1999) Attenuation of galactose-induced cataract by pyruvate. Free Rad Res 30: 253–263CrossRefGoogle Scholar
  17. 17.
    Zhao W, Devamanoharan PS, Varma SD (2000) Fructose induced deactivation of antioxidant enzymes: preventive effect of pyruvate. Free Rad Res 33: 23–30CrossRefGoogle Scholar
  18. 18.
    Varma SD, Devamanoharan PS, Ali AH (1998) Prevention of intracellular oxidative stress to lens by pyruvate and its ester. Free’Rad Res 28: 131–135Google Scholar
  19. 19.
    Montgomery CM, Webb JL (1956) Metabolic studies on heart mitochondria. II. The inhibitory action of parapyruvate on the tricarboxylic acid cycle. J Biol Chem 221: 359–368Google Scholar
  20. 20.
    Montgomery CM, Fairhurst AS, Webb JL (1956) Metabolic studies on heart mitochondria. III. The action of parapyruvate on a-ketoglutaric oxidase. J Biol Chem 221: 369–376Google Scholar
  21. 21.
    Willems JL, de Kort AFM, Vree TB, Trijbels JMF, Veerkamp JH, Monnens LAH (1978) Non-enzymatic conversion of pyruvate in aqueous solution to 2,4-dihydroxy-2-methylglutaric acid. FEBS Lett 86: 42–44PubMedCrossRefGoogle Scholar
  22. 22.
    Margolis SA, Coxon B (1986) Identification and quantitation of the impurities in sodium pyruvate. Anal Biochem 58: 2504–2510Google Scholar
  23. 23.
    Sims CA, Wattanasirichaigoon S, Menconi MJ, Ajami AM, Fink MP (2001) Ringer’s ethyl pyruvate solution ameliorates ischemia/reperfusion-induced intestinal mucosal injury in rats. Crit Care Med 29: 1513–1518PubMedCrossRefGoogle Scholar
  24. 24.
    Wattanasirichaigoon S, Menconi MJ, Delude RL, Fink MP (1999) Effect of mesenteric ischemia and reperfusion or hemorrhagic shock on intestinal mucosal permeability and ATP content in rats. Shock 12: 127–133PubMedCrossRefGoogle Scholar
  25. 25.
    Wattanasirichaigoon S, Menconi MJ, Delude RL, Fink MP (1999) Lisofylline ameliorates intestinal mucosal barrier dysfunction caused by ischemia and ischemia/reperfusion. Shock 11: 269–275PubMedCrossRefGoogle Scholar
  26. 26.
    Tawadrous ZS, Delude RL, Fink MP (2002) Resuscitation from hemorrhagic shock with Ringer’s ethyl pyruvate solution improves survival and ameliorates intestinal mucosal hyperpermeability in rats. Shock 17: 473–477PubMedCrossRefGoogle Scholar
  27. 27.
    Yang R, Gallo DJ, Baust JJ, et al (2002) Ethyl pyruvate modulates inflammatory gene expression in mice subjected to hemorrhagic shock. Am J Physiol 283: G212 - G222Google Scholar
  28. 28.
    Meldrum DR, Shenkar R, Sheridan BC, Cain BS, Abraham E, Harken AH (1997) Hemorrhage activates myocardial NF-kappaB and increases TNF-alpha in the heart. J Mol Cell Cardiol 29: 2849–2854PubMedCrossRefGoogle Scholar
  29. 29.
    Hierholzer C, Harbrecht B, Menezes JM, et al (1998) Essential role of induced nitric oxide in the initiation of the inflammatory response after hemorrhagic shock. J Exp Med 187: 917–928PubMedCrossRefGoogle Scholar
  30. 30.
    Venkataraman R, Kellum JA, Song M, Fink MP (2002) Resuscitation with Ringer’s ethyl pyruvate solution prolongs survival and modulates plasma cytokine and nitrite/nitrate concentrations in a rat model of lipopolysaccharide-induced shock. Shock 18: 507–512PubMedCrossRefGoogle Scholar
  31. 31.
    Ulloa L, Ochani M, Yang H, et al (2002) Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc Natl Acad Sci USA 99: 12351–12356PubMedCrossRefGoogle Scholar
  32. 32.
    Wang H, Bloom O, Zhang M, et al (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285: 248–251PubMedCrossRefGoogle Scholar
  33. 33.
    Fink MP, Heard SO (1990) Research review: laboratory models of sepsis and septic shock. J Surg Res 49: 186–196PubMedCrossRefGoogle Scholar
  34. 34.
    Unno N, Wang H, Menconi MJ, et al (1997) Inhibition of inducible nitric oxide synthase ameliorates lipopolysaccharide-induced gut mucosal barrier dysfunction in rats. Gastroenterology 113: 1246–1257PubMedCrossRefGoogle Scholar
  35. 35.
    Sappington PL, Yang R, Yang H, Tracey KJ, Delude RL, Fink MP (2002) HMGB1 B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in mice. Gastroenterology 123: 790–802PubMedCrossRefGoogle Scholar
  36. 36.
    Casellas F, Aguade S, Soriano B, Accarino A, Molero J, Guarner L (1986) Intestinal permeability to 99mTc-diethylenetriaminopentaacetic acid in inflammatory bowel disease. Am J Gastroenterol 81: 767–770PubMedGoogle Scholar
  37. 37.
    Deitch EA, Specian RD, Berg RD (1991) Endotoxin-induced bacterial translocation and mucosal permeability: role of xanthine oxidase, complement activation, and macrophage products. Crit Care Med 19: 785–791PubMedCrossRefGoogle Scholar
  38. 38.
    Sappington PL, Han X, Yang R, Delude RL, Fink MP (2003) Ethyl pyruvate ameliorates intestinal epithelial barrier dysfunction in endotoxemic mice and immunostimulated Caco-2 enterocytic monolayers. J Pharmacol Exp Ther 304: 464–476PubMedCrossRefGoogle Scholar
  39. 39.
    Chavez A, Menconi MJ, Hodin RA, Fink MP (1999) Cytokine-induced epithelial hyperpermeability: role of nitric oxide. Crit Care Med 27: 2246–2251PubMedCrossRefGoogle Scholar
  40. 40.
    Mertz RJ, Worley JFI, Spencer B, Johnson JH, Dukes ID (1996) Activation of stimulus-secretion coupling in pancreatic ß-cells by specific products of glucose metabolism. J Biol Chem 271: 4838–4845PubMedCrossRefGoogle Scholar
  41. 41.
    Zawalich WS, Zawalich KC (1997) Influence of pyruvic acid methyl ester on rat pancreatic islets. Effects on insulin secretion, phosphoinositide hydrolysis, and sensitization of the beta cell. J Biol Chem 272: 3527–3531Google Scholar
  42. 42.
    Lembert N, Joos HC, Idahl L-A, Ammon HPT, Wahl MA (2001) Methyl pyruvate initiates membrane depolarization and insulin release by metabolic factors other than ATP. Biochem J 354: 345–350PubMedCrossRefGoogle Scholar
  43. 43.
    Parikh AA, Moon MR, Pritts TA, et al (2000) IL-lbeta induction of NF-kappaB activation in human intestinal epithelial cells is independent of oxyradical signaling. Shock 13: 8–13PubMedCrossRefGoogle Scholar
  44. 44.
    Salzman AL, Denenberg AG, Ueta I, O’Connor M, Linn SC, Szabo C (1996) Induction and activity of nitric oxide synthase in cultured human intestinal epithelial monolayers. Am J Physiol 270: G565 - G573PubMedGoogle Scholar
  45. 45.
    Bowie AG, Moynagh PN, O’Neill LAJ (1997) Lipid peroxidation is involved in the activation of NF-KB by tumor necrosis factor but not interleukin-1 in the human endothelial cell line ECV304. J Biol Chem 272: 25941–25950PubMedCrossRefGoogle Scholar
  46. 46.
    Chandel NS, Trzyna WC, McClintock DS, Schumacker PT (2000) Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. J Immunol 165: 1013–1021PubMedGoogle Scholar
  47. 47.
    Lyss G, Knorre A, Schmidt TJ, Pahl HL, Merfort I (1998) The anti-inflammatory sesquiterpene lactone helenalin inhibits the transcription factor NF-kappaB by directly targeting p65. J Biol Chem 273: 33508–33516PubMedCrossRefGoogle Scholar
  48. 48.
    Schmidt TJ, Lyss G, Pahl HL, Merfort I (1999) Helenanolide type sesquiterpene lactones. Part 5: the role of glutathione addition under physiological conditions. Bioorg Med Chem 7: 2849–2855PubMedCrossRefGoogle Scholar
  49. 49.
    Garcia-Pineres AJ, Castro V, Mora G, et al (2001) Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J Biol Chem 276: 39713–39720PubMedCrossRefGoogle Scholar
  50. 50.
    Dupuis G, Mitchell JC, Towers GH (1974) Reaction of alantolactone, an allergenic sesquiterpene lactone, with some amino acids. Resultant loss of immunologic reactivity. Can J Biochem 52: 575–581Google Scholar
  51. 51.
    Hay AJB, Hamburger M, Hostettmann K, Hoult JRS (1994) Toxic inhibition of smooth muscle contractility by plant-derived sesquiterpenes caused by their chemically reactive alpha-methylenebutyrolactone functions. Br J Pharmacol 112: 9–12PubMedCrossRefGoogle Scholar
  52. 52.
    Schmidt TJ (1999) Toxic activities of sesquiterpene lactones: structural and biochemical aspects. Curr Org Chem 3: 577–608Google Scholar
  53. 53.
    Chiang Y, Kresge AJ, Pruszynski P (1992) Keto-enol equilibria in the pyruvic acid system: determination of the keto-enol equilibrium constants of pyruvic acid and pyruvate anion and the acidity constant of pyruvate enol in aqueous solution. J Am Chem Soc 114: 3103–3107CrossRefGoogle Scholar
  54. 54.
    Keeffe JR, Kresge AJ, Schepp NP (1990) Keto-enol equilibrium constants of simple mono-functional aldehydes and ketones in aqueous solution. J Am Chem Soc 112: 4862–4868CrossRefGoogle Scholar
  55. 55.
    Hynes MJ, O’Regan BD (1979) Kinetics and mechanisms of the reactions of nickel(II) and pentane-2,4-dione. J Chem Soc, Dalton Trans 162–166Google Scholar
  56. 56.
    Hynes MJ, O’Shea MT (1983) Kinetics and mechanisms of the reactions of nickel(II), cobalt(II), copper(II), and iron(III) with 1,1,1-trifluoropentane-2,4-dione. J Chem Soc, Dalton Trans 331–336Google Scholar
  57. 57.
    Brennan P, O’Neill LA (1998) Inhibition of nuclear factor kappaB by direct modification in whole cells–mechanism of action of nordihydroguaiaritic acid, curcumin and thiol modifiers. Biochem Pharmacol 55: 965–973PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • M. P. Fink

There are no affiliations available

Personalised recommendations