Clinical Use of Venoarterial PCO2 Difference in Septic Shock

  • J. L. Teboul
  • X. Monnet

Abstract

The venoarterial carbon dioxide (CO2) pressure (PCO2) gradient (ΔPCO2) is the difference between PCO2 in the mixed venous blood (PvCO2) and the PCO2 in the arterial blood (PaCO2). PaCO2 and PvCO2 represent the partial pressures of the dissolved CO2 in arterial and mixed venous blood, respectively, which represent only a fraction of arterial CO2 content (CaCO2) and mixed venous CO2 content (CvCO2), respectively.

Keywords

Cardiac Output Septic Shock Tissue Hypoxia Septic Shock Patient Blood Lactate Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Groeneveld ABJ (1998) Interpreting the venous-arterial PCO2 difference. Crit Care Med 26: 979–980PubMedCrossRefGoogle Scholar
  2. 2.
    McHardy GJR (1967) The relationship between the differences in pressure and content of carbon dioxide in arterial and venous blood. Clin Sci 32: 299–309PubMedGoogle Scholar
  3. 3.
    Randall HM Jr, Cohen JJ (1966) Anaerobic CO2 production by dog kidney in vitro. Am J Physiol 211: 493–505PubMedGoogle Scholar
  4. 4.
    Zhang H, Vincent JL (1993) Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis 148: 867–871PubMedCrossRefGoogle Scholar
  5. 5.
    Kette F, Weil MH, Gazmuri RJ, Bisera J, Rackow EC (1993) Intramyocardial hypercarbic acidosis during cardiac arrest and resuscitation. Crit Care Med 21: 901–906PubMedCrossRefGoogle Scholar
  6. 6.
    Van der Linden P, Rausin I, Deltell A, et al (1995) Detection of tissue hypoxia by arteriovenous gradient for PCO2 and pH in anesthetized dogs during progressive hemorrhage. Anesth Analg 80: 269–275PubMedGoogle Scholar
  7. 7.
    Groeneveld AB, Vermeij CG, Thijs LG (1991) Arterial and mixed venous blood acid-base balance during hypoperfusion with incremental positive end-expiratory pressure in the pig. Anesth Analg 73. 576–582PubMedGoogle Scholar
  8. 8.
    Rackow EC, Astiz ME, Mecher CE, Weil MH (1994) Increased venous-arterial carbon dioxide tension difference during severe sepsis in rats. Crit Care Med 22: 121–125PubMedGoogle Scholar
  9. 9.
    Benjamin E (1994) Venous hypercarbia: a nonspecific marker of hypoperfusion. Crit Care Med 22: 9–10PubMedGoogle Scholar
  10. 10.
    Cohen IL, Sheikh FM, Perkins RJ, Feustel PJ, Foster ED (1995) Effect of hemorrhagic shock and reperfusion on the respiratory quotient in swine. Crit Care Med 23: 545–552PubMedCrossRefGoogle Scholar
  11. 11.
    Vallet B, Teboul JL, Cain S, Curtis S (2000) Veno-arterial CO2 difference during regional ischemic or hypoxic hypoxia. J Appl Physiol 89: 1317–1321PubMedGoogle Scholar
  12. 12.
    Neviere R, Chagnon JL, Teboul JL, Vallet B, Wattel F (2002) Small intestine intramucosal PCO2 and microvascular blood flow during hypoxic and ischemic hypoxia. Crit Care Med 30: 379–384PubMedCrossRefGoogle Scholar
  13. 13.
    Mecher CE, Rackow EC, Astiz ME, Weil MH (1990) Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit Care Med 18: 585–589PubMedCrossRefGoogle Scholar
  14. 14.
    Bakker J, Vincent JL, Gris P, Leon M, Coffermils M, Kahn RJ (1992) Veno-arterial carbon dioxide gradient in human septic shock. Chest 101: 509–515PubMedCrossRefGoogle Scholar
  15. 15.
    Parillo JE (1993) Pathogenetic mechanisms of septic shock. N Engl J Med 328: 1471–1477CrossRefGoogle Scholar
  16. 16.
    Astiz ME, Rackow EC (1986) Septic shock. Lancet 351: 1501–1505CrossRefGoogle Scholar
  17. 17.
    Groeneveld ABJ, Bronsveld W, Thijs LG (1986) Hemodynamic determinants of mortality in human septic shock. Surgery 99: 140–153PubMedGoogle Scholar
  18. 18.
    Levy B, Bollaert PE, Charpentier C, et al (1997) Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism and gastric tonometric variables in septic shock. A prospective, randomized study. Intensive Care Med 23: 282–287PubMedCrossRefGoogle Scholar
  19. 19.
    Chiolero R, Flatt JP, Revelly JP Jequier E (1991) Effects of catecholamines on oxygen consumption and oxygen delivery in critically ill patients. Chest 100: 1676–1684PubMedCrossRefGoogle Scholar
  20. 20.
    Teboul Jl, Mercat A, Lenique F, Berton C, Richard C (1998) Value of venous-arterial PCO2 gradient to reflect the 02 supply to demand in humans. Crit Care Med 26: 1007–1010CrossRefGoogle Scholar
  21. 21.
    Teboul JL, Boujdaria R, Graini L, Berton C, Richard C (1993) Cardiac index vs oxygen-derived parameters for rational use of dobutamine in patients with congestive heart failure. Chest 103: 81–85PubMedCrossRefGoogle Scholar
  22. 22.
    GattinoniL, Brazzi L, Pelosi P, et al (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. Sv02 collaborative group. N Engl J Med 333: 1025–1032PubMedCrossRefGoogle Scholar
  23. 23.
    Alia I, Esteban A, Gordo F, et al (1999) A randomized and controlled trial of the effect of treatment aimed at maximizing oxygen delivery in patients with severe sepsis or septic shock. Chest 115: 453–461PubMedCrossRefGoogle Scholar
  24. 24.
    Bernardin G, Lucas P, Hyvernat H, Deloffre P, Mattei M (1999) Influence of alveolar ventilation changes on calculated gastric intramucosal pH and gastric-arterial PCO2 difference. Intensive Care Med 25: 269–273PubMedCrossRefGoogle Scholar
  25. 25.
    Teboul JL, Michard F, Richard C (1996) Critical analysis of venoarterial CO2 gradient as a marker of tissue hypoxia. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer, Heidelberg, pp 296–307CrossRefGoogle Scholar
  26. 26.
    Heino A, Haetikainen J, Merasto ME, Alhava E, Takala J (1998) Systemic and regional PCO2 gradients as markers of intestinal ischemia. Intensive Care Med 24: 599–604PubMedCrossRefGoogle Scholar
  27. 27.
    Ruokonen E, Takala J, Kari A (1993) Regional blood flow and oxygen transport in septic shock. Crit Care Med 21: 1296–1303PubMedCrossRefGoogle Scholar
  28. 28.
    Fiddian-Green RG (1993) Associations between intramucosal acidosis in the gut and organ failure. Crit Care Med 21: S103 - S105PubMedCrossRefGoogle Scholar
  29. 29.
    Crapo RO (1998) Arterial blood gases: quality assessment. In: Tobin M (ed) Principle and Practice of Intensive Care Monitoring. Mc Graw-Hill, New-York, pp 107–122Google Scholar
  30. 30.
    Mekontso-Dessap A, Castelain V, Anguel N, et al (2002) Combination of venoarterial PCO2 difference with arteriovenous 02 content difference to detect anaerobic metabolism in patients. Intensive Care Med 28: 272–277PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • J. L. Teboul
  • X. Monnet

There are no affiliations available

Personalised recommendations