Skip to main content

The Case for Tissue Base Excess

  • Conference paper
Book cover Intensive Care Medicine

Abstract

Over many years a number of indices have enjoyed varying popularity as measures of ‘global’ tissue well-being in critical illness. These have ranged from the plasma lactate concentration to more invasive measurements such as oxygen delivery (DO2), oxygen consumption (VO2) and their relationships, mixed venous oxygen saturation (SvO2) and the veno-arterial PCO2 gradient. However, all such global indices have one major drawback. Since they are integrations derived from multiple inputs, their sensitivity to isolated regional dysoxia is poor. For example, the mixed venous oxygen tension (PvO2) is a flow-weighted average of post-capillary oxygen tensions in all organs contributing to venous return. At a PvO2 of 40 mmHg, the average intracellular PO2 is 11 mmHg [1]. At a PvO2 of 26 mmHg, average intracellular PO2 has fallen below the ‘Pasteur point’ to 0.8 mmHg. Consequently a PvO2 < 26 mmHg is a highly specific marker of tissue dysoxia. However, a normal PvO2 does not in any way rule out small pockets of significant dysoxia. To take an extreme example, a normal PvO2 can persist despite absolute ischemia in a major organ, as in brain death. Furthermore, an elevated PvO2 is far from a reassurance, since it can be a manifestation of tissue shunting [2], cytopathic hypoxia [3] or some combination of both [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Siggaard-Andersen O, Fogh-Andersen N, Gothgen IH, Larsen VH (1995) Oxygen status of arterial and mixed venous blood. Crit Care Med 23: 1284–1293

    Article  PubMed  CAS  Google Scholar 

  2. Ince C, Sinaasappel M (1999) Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 27: 1369–1377

    Article  PubMed  CAS  Google Scholar 

  3. Brealey D, Brand M, Hargreaves I, at al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360: 219–223

    Article  PubMed  CAS  Google Scholar 

  4. Tugtekin IF, Radermacher P, Theisen M, at al (2001) Increased ileal-mucosal PCO2 gap is associated with impaired villus microcirculation in endotoxic pigs. Intensive Care Med 27: 757–766

    Article  PubMed  CAS  Google Scholar 

  5. Fiddian-Green RG (1992) Tonometry: theory and applications. Intensive Care World 9: 6065

    Google Scholar 

  6. Adar R, Franklin A, Spark RF, Rosoff CB, Salzman EW (1976) Effect of dehydration and cardiac tamponade on superior mesenteric artery flow: role of vasoactive substances. Surgery 79: 534–543

    PubMed  CAS  Google Scholar 

  7. McNeill JR, Stark RD, Greenway CV (1970) Intestinal vasoconstriction after hemorrhage: roles of vasopressin and angiotensin. Am J Physiol 219: 1342–1347

    PubMed  CAS  Google Scholar 

  8. Ganong W (1997) Circulation through special regions. In: Ganong W, ed. Review of Medical Physiology. Appleton and Lange, Stamford, pp 567–585

    Google Scholar 

  9. Lundgren O, Haglund U (1978) The pathophysiology of the intestinal countercurrent exchanger. Life Sci 23: 1411–1422

    Article  PubMed  CAS  Google Scholar 

  10. Kiel JW, Riedel GL, Shepherd AP (1989) Effects of hemodilution on gastric and intestinal oxygenation. Am J Physiol 256: H171 - H178

    PubMed  CAS  Google Scholar 

  11. Dantzker DR (1993) The gastrointestinal tract. The canary of the body? JAMA 270: 1247–1248

    Article  PubMed  CAS  Google Scholar 

  12. Biffi and Moore EE (1996) Splanchnic ischemia/reperfusion and multiple organ failure. Br J Anesth 77: 59–70

    Article  Google Scholar 

  13. Vallet B, Lebuffe G (1999) The role of the gut in multiple organ failure. In: Vincent J-L (ed) Yearbook of Intensive Care and Emergency Medicine. Springer, Berlin Heidelberg, pp 539–546

    Google Scholar 

  14. Weil MH, Nakagawa Y, Tang W, et al (1999) Sublingual capnometry: A new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med 27: 1225–1229

    Article  PubMed  CAS  Google Scholar 

  15. Sato Y, Weil MH, Tang W, et al (1997) Esophageal PCO2 as a monitor of perfusion failure during hemorrhagic shock. J Appl Physiol 82: 558–562

    PubMed  CAS  Google Scholar 

  16. Soller BR, Cingo N, Puyana JC, et al (2001) Simultaneous measurement of hepatic tissue pH, venous oxygen saturation and hemoglobin by near infrared spectroscopy. Shock 15: 106–111

    Article  PubMed  CAS  Google Scholar 

  17. Puyana JC, Soller BR, Parikh B, Heard SO (2000) Directly measured tissue pH is an earlier indicator of splanchnic acidosis than tonometric parameters during hemorrhagic shock in swine. Crit Care Med 28: 2557–2562

    Article  PubMed  CAS  Google Scholar 

  18. Venkatesh B, Morgan TJ, Lipman J (2000) Subcutaneous oxygen tensions provide similar information to ileal luminal 02 and CO2 tensions in an animal model of hemorrhagic shock. Intensive Care Med 26: 592–600

    Article  PubMed  CAS  Google Scholar 

  19. Venkatesh B, Meacher R, Muller M, Morgan TJ, Fraser J (2001) Monitoring tissue oxygenation during resuscitation of major burns. J Trauma 50: 485–494

    Article  PubMed  CAS  Google Scholar 

  20. Venkatesh B, Morgan TJ (2001) Monitoring tissue gas tensions in critical illness. In: Vincent J-L, editor. Yearbook of Intensive Care and Emergency Medicine. Berlin Heidelberg: Springer, pp 251–265

    Google Scholar 

  21. Venkatesh B, Morgan TJ (2002) Tissue lactate concentrations in critical illness. In: Vincent J-L (ed) Yearbook of Intensive Care and Emergency Medicine. Springer, Heidelberg, pp 587–599

    Google Scholar 

  22. Mathura KR, Alic L, Ince C (2001) Initial clinical experience with OPS imaging for observation of the human microcirculation. In: Vincent J-L (ed) Yearbook of Intensive Care and Emergency Medicine. Springer, Heidelber, pp 233–244

    Google Scholar 

  23. Karzai W, Gunnicker M, Scharbert G, Vorgrimler-Karzai UM, Priebe HJ (1996) Effects of dobutamine on oxygen consumption and gastric mucosal blood flow during cardiopulmonary bypass in humans. Br J Anaesth 77: 603–606

    Article  PubMed  CAS  Google Scholar 

  24. Uusaro A, Ruokonen E, Takala J (1995) Estimation of splanchnic blood flow by the Fick principle in man and problems in the use of indocyanine green. Cardiovasc Res 30: 106–112

    PubMed  CAS  Google Scholar 

  25. Simonson SG, Piantadosi CA (1996) Near-infrared spectroscopy. Crit Care Clin 12: 1019–1029

    Article  PubMed  CAS  Google Scholar 

  26. Beilman GJ, Cerra FB (1996) The future. Monitoring cellular energetics. Crit Care Clin 12: 1031–1042

    Google Scholar 

  27. Uhlig T, Pestel G, Reinhart K (2002) Gastric mucosal tonometry in daily ICU practice. In: Vincent J-L (ed) Yearbook of Intensive Care and Emergency Medicine. Springer, Heidelberg, pp 632–637

    Google Scholar 

  28. Kolkman JJ, Otte JA, Groeneveld ABJ (2000) Gastrointestinal luminal PCO2 tonometry: an update on physiology, methodology and clinical applications. Br J Anaesth 84: 74–86

    Article  PubMed  CAS  Google Scholar 

  29. Lebuffe G, Robin E, Vallet B (2001) Gastric tonometry. Intensive Care Med 27: 317–319

    Article  PubMed  CAS  Google Scholar 

  30. Fiddian-Green RG (1995) Gastric intramucosal pH, tissue oxygenation and acid-base balance. Br J Anaesth 74: 591–606

    Article  PubMed  CAS  Google Scholar 

  31. Bennet-Guerrero E, Panah MH, Bodian CA, et al (2000) Automated detection of gastric luminal partial pressure of carbon dioxide during cardiovascular surgery using the Tonocap. Anesthesiology 92: 38–45

    Article  Google Scholar 

  32. Fiddian-Green RG, McGough E, Pittenger G, Rothman E (1983) Predictive value of intramural pH and other risk factors for massive bleeding from stress ulceration. Gastroenterology 85: 613–620

    PubMed  CAS  Google Scholar 

  33. Bouaachour G, Guiraud MP, Gouello JP, Roy PM, Alquier P (1996) Gastric intramucosal pH: an indicator of weaning outcome from mechanical ventilation in COPD patients. Eur Respir J 9: 1868–1873

    Article  Google Scholar 

  34. Roumen RM, Vreudge JPC, Goris JA (1994) Gastric tonometry in multiple trauma patients. J Trauma 36: 313–316

    Article  PubMed  CAS  Google Scholar 

  35. Downing A, Cottam S, Beard C (1993) Gastric mucosal pH predicts major morbidity following orthotopic liver transplantation. Transplantation Proc 25: 1804

    CAS  Google Scholar 

  36. Mythen MG, Webb AR (1994) Intra-operative gut mucosal hypoperfusion is associated with increased pot-operative complications and cost. Intensive Care Med 20: 99–104

    Article  PubMed  CAS  Google Scholar 

  37. Marik P (1993) Gastric intramucosal pH: A better predictor of multiple organ dysfunction syndrome and death than oxygen-derived variable in patients with sepsis. Chest 104: 225–229

    Article  PubMed  CAS  Google Scholar 

  38. Maynard N, Bihari D, Beale R, et al (1993) Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure. JAMA 270: 1203–1210

    Article  PubMed  CAS  Google Scholar 

  39. Friedman G, Berlot G, Kahn RJ, Vincent JL (1995) Combined measurements of blood lactate concentrations and gastric intramucosal pH in patients with severe sepsis. Crit Care Med 23: 1184–1193

    Article  PubMed  CAS  Google Scholar 

  40. Gutierrez G, Palizas F, Doglio G, et al (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339: 195–199

    Article  PubMed  CAS  Google Scholar 

  41. Ivatury RR, Simon RJ, Havriliak D, Garcia G, Greenbarg J, Stahl WM (1995) Gastric muco-sal pH and oxygen delivery and oxygen consumption indices in the assessment of the adequacy of resuscitation after trauma: A prospective randomised study. J Trauma 39: 128–136

    Google Scholar 

  42. Lebuffe G, Decoene C, Crepin F, Pol A, Vallet B (1999) Regional capnometry with air-automated tonometry detects circulatory failure earlier than conventional hemodynamics after cardiac surgery. Anesth Analg 89: 1084–1090

    Article  PubMed  CAS  Google Scholar 

  43. Pargger H, Hampl KF, Christen P, Staender S, Scheidegger D (1998) Gastric intramucosal pH-guided therapy in patients after elective repair of infrarenal abdominal aneurysms: is it beneficial? Intensive Care Med 24: 769–776

    Article  PubMed  CAS  Google Scholar 

  44. Gomersall CD, Joynt GM, Freebairn RC, et al (2000) Resuscitation of critically ill patients based on the results of gastric tonometry: a prospective, randomized, controlled trial. Crit Care Med 28: 607–614

    Article  PubMed  CAS  Google Scholar 

  45. Benjamin E, Oropello JM (1996) Does gastric tonometry work? No. Crit Care Clin 12: 587–601

    Article  PubMed  CAS  Google Scholar 

  46. Morgan TJ, Venkatesh B, Endre ZH (1999) Accuracy of intramucosal pH calculated from arterial bicarbonate and the Henderson-Hasselbalch equation: assessment using simulated ischemia. Crit Care Med 27: 2495–2499

    Article  PubMed  CAS  Google Scholar 

  47. Morgan TJ, Venkatesh B, Bawa GPS, Purdie DM (2001) Transient mesenteric ischemic episodes tracked by continuous jejunal PCO2 monitoring during liquid feeding. Intensive Care Med 27: 1408–1411

    Article  PubMed  CAS  Google Scholar 

  48. Venkatesh B, Morgan TJ (2000) Blood in the gastrointestinal tract delays and blunts the PCO2 response to transient mucosal ischemia. Intensive Care Med 26: 1108–1115

    Article  PubMed  CAS  Google Scholar 

  49. Noc M, Weil MH, Sun S, Gazmuri RJ, Tang W, Pakula JL (1993) Comparison of gastric luminal and gastric wall PCO2 during hemorrhagic shock. Circ Shock 40: 194–199

    PubMed  CAS  Google Scholar 

  50. Vallet B, Tavernier B, Lund N (2000) Assessment of tissue oxygenation in the critically ill. Eur J Anaesthesiol 17: 221–229

    PubMed  CAS  Google Scholar 

  51. Schlichtig R, Mehta N, Gayoski TJP (1996) Tissue-arterial PCO2 difference is a better marker of ischemia than intramural pH (pHi) or arterial pH-pHi difference. J Crit Care 11: 5156

    Article  Google Scholar 

  52. Heino A, Hartikainen J, Merasto ME, et al (1998) Systemic and regional PCO2 gradients as markers of intestinal ischemia. Intensive Care Med 24: 599–604

    Article  PubMed  CAS  Google Scholar 

  53. Rozenfeld RA, Dishart MK, Tannessen TI, Schlichtig R (1996) Methods for detecting local intestinal ischemic anaerobic metabolic acidosis by PCO2. J Appl Physiol 81: 1834–1842

    PubMed  CAS  Google Scholar 

  54. Miller PR, Kincaid EH, Meredith JW, Chang MC (1998) Threshold values of intramucosal pH and mucosal-arterial CO2 gap during shock resuscitation. J Trauma 45: 868–872

    Article  PubMed  CAS  Google Scholar 

  55. Vallet B, Teboul JL, Cain S, Curtis S (2000) Venoarterial CO2 difference during regional ischemic or hypoxic hypoxia. J Appl Physiol 89: 1317–1321

    PubMed  CAS  Google Scholar 

  56. Neviere R, Chagnon JL, Teboul JL, Vallet B, Wattel F (2002) Small intestine intramucosal PCO2 and microvascular blood flow during hypoxic and ischemic hypoxia. Crit Care Med 30: 379–384

    Article  PubMed  Google Scholar 

  57. Astrup P, Jorgensen K, Siggaard-Andersen O, et al (1960) Acid-base metabolism: New approach. Lancet 1: 1035–1039

    Article  PubMed  CAS  Google Scholar 

  58. Raza O, Schlichtig R (2000) Metabolic component of intestinal PCO2 during dysoxia. J Appl Physiol 89: 2422–2429

    PubMed  CAS  Google Scholar 

  59. Stewart PA (1981) How to understand acid-base. In: Stewart PA (ed) A Quantitative Acid-Base Primer for Biology and Medicine. Elsevier, New York, pp 1–286

    Google Scholar 

  60. Stewart PA (1983) Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 61: 1444–1461

    Article  PubMed  CAS  Google Scholar 

  61. Rossing TH, Maffeo N, Fend V (1986) Acid-base effects of altering plasma protein concentration in human blood in vitro. J Appl Physiol 61: 2260–2265

    PubMed  CAS  Google Scholar 

  62. Siggaard-Andersen 0 (1977) The Van Slyke equation. Scand J Clin Lab Invest Suppl 37: 1520

    Google Scholar 

  63. Morgan TJ, Clark C, Endre ZH (2000) The accuracy of base excess–an in vitro evaluation of the Van Slyke equation. Crit Care Med 28: 2932–2936

    Article  PubMed  CAS  Google Scholar 

  64. Schwartz WB, Reiman AS (1963) A critique of the parameters used in the evaluation of acid-base disorders. N Engl J Med 268: 1382–1388

    Article  PubMed  CAS  Google Scholar 

  65. Schlichtig R, Grogono AW, Severinghaus JW (1988) Human PaCO2 and standard base excess compensation for acid-base imbalance. Crit Care Med 26: 1173–1179

    Article  Google Scholar 

  66. Worthley LIG (1994) Body fluid spaces. In: Worthley LIG (ed) Synopsis of Intensive Care Medicine. Churchill Livingstone, Edinburgh, pp 421–427

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morgan, T.J., Venkatesh, B. (2003). The Case for Tissue Base Excess. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5548-0_53

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5548-0_53

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5550-3

  • Online ISBN: 978-1-4757-5548-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics