Reflectance Spectrophotometry and Tissue Oxygenation in Experimental and Clinical Practice

  • M. P. Buise
  • J. van Bommel
  • C. Ince
Conference paper


Maintenance of adequate oxygen delivery (DO2) to the tissue cells can be considered a primary objective in intensive care and peri-operative patient management. Generally, it is believed that tissue hypoxia plays a significant role in the development of organ failure in critically ill patients and is a major factor in the pathogenesis of multi-organ dysfunction. The introduction of regional measurement techniques has highlighted the inadequacy of the information being generated by global measurements of hemodynamic and oxygen-related variables and has focused attention on the processes underlying microcirculatory oxygenation. It should be obvious that an adequate transport of oxygen by the cardiovascular system does not guarantee its delivery to the critical tissues of the body [1]. For this reason, assessment of tissue oxygenation is essential.


Laser Doppler Flowmetry Gastric Mucosal Blood Flow Microvascular Blood Flow Hemoglobin Oxygen Saturation Microcirculatory Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dantzker DR (1997) Monitoring tissue oxygenation, the search for the grail. Chest 111: 1213CrossRefGoogle Scholar
  2. 2.
    Siegemund M, van Bommel J, Ince C (1999) Assessment of regional tissue oxygenation. Intensive Care Med 25: 1044–1060PubMedCrossRefGoogle Scholar
  3. 3.
    Ince C, Sinaasappel M (1999) Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 27: 1369–1377PubMedCrossRefGoogle Scholar
  4. 4.
    Chance B (1952) Rapid and sensitive spectrophotometry I. Accelerated and stopped-flow methods for the measurement of reaction kinetics and spectra of unstable compounds in the visible region of the spectrum. Rev Sci Instrum 22: 619–6272CrossRefGoogle Scholar
  5. 5.
    Sato N, Takenobu K, Motoaki S, Kawano S, Abe H, Hagihara B (1979) Measurement of hemoperfusion and oxygen sufficiency in gastric mucosa in vivo. Gastroeneterology 76: 814–819Google Scholar
  6. 6.
    Frank KH, Kessler M, Appelbaum K, Dummler W (1989) The Erlangen micro-lightguide spectrophotometer EMPHO 1. Phys Med Biol 34: 1883–1900PubMedCrossRefGoogle Scholar
  7. 7.
    Dantzker DR (1993) The gastrointestinal tract. The canary of the body? JAMA 270: 1247–1248PubMedCrossRefGoogle Scholar
  8. 8.
    Wilmore DW, Smith RJ, O’Dwyer ST, Jacobs DO, Ziegler TR, Wang XD (1988) The gut: A central organ after surgical stress. Surgery 104: 917–923Google Scholar
  9. 9.
    Sato N, Kamade T, Shichiri M, Kawano S, Abe H, Hagihara B (1979) Measurements of haemoperfusion and oxygen sufficiency in gastric mucosa in vivo. Evidence of mucosal hypoxia as the cause of hemorrhagic shock induced gastric mucosal lesion in rats. Gastroenterology 76: 814–819Google Scholar
  10. 10.
    Sato N, Shichiri M, Hayaschi N (1978) Non-destructive measurements of concentrations of respiratory enzymes and the rate of oxygen consumption in living liver tissue by reflectance spectrophotometry. In: Dutton PL (ed) Frontiers in Bioenergetics. Academic Press, New York, pp 507–1515Google Scholar
  11. 11.
    Sato N, Hayashi N, Kawano S, Kamade T, Abe H (1983) Hepatic hemodynamics in patients with chronic hepatitis or cirrhosis as assessed by organ-reflectance spectrophotometry. Gastroenterology 84: 611–616PubMedGoogle Scholar
  12. 12.
    Brunner M, Ellerman R, Frank KH, Kessler M (1985) Measurements and processing of intracapillary hemoglobin spectra by using as micro-lightguide spectrophotometer in connection with a microcomputer. Adv Exp Med Biol 191: 909–916PubMedCrossRefGoogle Scholar
  13. 13.
    Kubelka P, Munk F(1931) Ein Beitrag zur Optik der Farbanstriche. Z Technische Physik 11: 76–77Google Scholar
  14. 14.
    Kessler M, Frank KH, Höper J, Tauschek D, Zündorf J (1992) Reflection Spectrometry. In: Erdmann W, Bruley DF (ed) Oxygen Transport to Tissue XIV. Plenum Press, New York pp 203–212CrossRefGoogle Scholar
  15. 15.
    Hoffman J, Hannebauer F, Lubbers DW (1985) Simulation of the optical properties of an absorbing and scattering medium using the monte-carlo technique compared with two-and six-flux theories. In: Kreutzer F (ed) Oxygen Transport to Tissue VII, Plenum Press, New York, pp 883–888CrossRefGoogle Scholar
  16. 16.
    Hoffman J, Lubbers DW, Heise HM (1998) Applicability of the Kubelka-Munk theory for the evaluation of reflectance spectra demonstrated for haemoglobin free perfused heart tissue. Phys Med Biol 43: 3571–3587CrossRefGoogle Scholar
  17. 17.
    Dümmler W (1988) Bestimmung von Hämoglobin-Oxygenierung und relativer Hämoglobin-Konzentration in biologische systemen durch auswertung von remissionspektren met hilfe der Kubelka-Munk-Theorie. Thesis, Friedrich-Alexander-Universität, Erlangen-NürnbergGoogle Scholar
  18. 18.
    Krug A, Kessler M (1997) Validation and improvements of an algorithm for determination of hemoglobin oxygenation, based on spectral data recorded by tissue spectrophotometer. Proc SPIE 2979: 344–354CrossRefGoogle Scholar
  19. 19.
    Krug A (1998) Quantitative optische Gewebemessungen am Herzen und an der Leber. Thesis, Friedrich-Alexander-Universität Erlangen-NürnbergGoogle Scholar
  20. 20.
    Kamade T, Sato N, Kawano S (1982) Gastric mucosal hemodynamics after thermal or head injury. Gastroenterology 83: 535–540Google Scholar
  21. 21.
    Kamade T, Kawano S, Sato N (1983) Gastric mucosal blood distribution and its changes in the healing process of gastric ulcer. Gastroenterology 84: 1541–1546Google Scholar
  22. 22.
    Leung FW, Morishita T, Livingston EH, Reedy T, Guth PH (1987) Reflectance spectrophotometry for the assessment of gastroduodenal mucosal perfusion. Am J Physiol 252: G797 - G804PubMedGoogle Scholar
  23. 23.
    Leung FW, Guth PH (1986) Interpretation of reflectance spectrophotometric measurements of gastroduodenal mucosal hemodynamic changes. Clin Res 34: 95A (abst)Google Scholar
  24. 24.
    Chung SCS, Leung JWC, Leung FW (1990) Effect of submucosal epinephrine injection on lacal gastric blood flow. Dig Dis Sc 35: 1008–1011CrossRefGoogle Scholar
  25. 25.
    Casadevall M, Panes J, Pique, JM, Bosch J, Teres J, Rodes J (1992) Limitations of laser-Doppler velocimetry and reflectance spectrophotometry in estimating gastic mucosal blood flow. Am J Physiol 263: G810 - G815PubMedGoogle Scholar
  26. 26.
    Panes J, Casadevall M, Pique JM, Bosch J, Whittle BJR, Teres J (1992) Effects of acute normovolemic anemia on gastric mucosal blood flow in rats: Role of nitric oxide. Gastroenterology 103: 407–413Google Scholar
  27. 27.
    Hasibeder W, Germann R, Wolf HJ, et al (1996) Effects of short-term endotoxemia and dopamine on mucosal oxygenation in porcine jejunum. Am J Physiol 270: G667 - G675PubMedGoogle Scholar
  28. 28.
    Träger K, Matejovic M, Zulke C, et al (2000) Hepatic 02 exchange and liver energy metabolism in hyperdynamic porcine endotoxemia: effects of iloprost. Intensive Care Med 26: 1531–1539PubMedCrossRefGoogle Scholar
  29. 29.
    Matejovic M, Radermacher P, Zülke C, et al (2000) Effects of the combined thromboxane receptor antagonist and synthetase inhibitor DTTX-30 on intestinal 02 exchange and energy metabolism during hyperdynamic porcine endotoxemia. Shock 13: 307–313PubMedCrossRefGoogle Scholar
  30. 30.
    Germann R, Haisjackl M, Schwarz B, et al (1997) Inotropic treatment and intestinal muco-sal tissue oxygnation in a model of porcine endotoxemia. Crit Care Med 25: 1191–1197PubMedCrossRefGoogle Scholar
  31. 31.
    Germann R, Haisjackl M, Hasibeder W, et al (1994) Dopamine and mucosal oxygenation in the porcine jejunum. J Appl Physiol 77: 2845–2852PubMedGoogle Scholar
  32. 32.
    Germann R, Hasibeder W, Haisjackl M, et al (1995) Dopamine-l-receptor stimulation and mucosal tissue oxygenation in the porcine jejunum. Crit Care Med 23: 1560–1566PubMedCrossRefGoogle Scholar
  33. 33.
    Schwarz B, Hofstotter H, Salak N, et al (2001) Effects of norepinephrine and phenyl-ephrine on intestinal oxygen supply and mucosal tissue oxygen tension. Intensive Care Med 27: 593–601PubMedCrossRefGoogle Scholar
  34. 34.
    Salak N, Pajk W, Knotzer H, et al (2001) Effect of epinephrine on intestinal oxygen supply and mucosal tissue oxygen tension in pigs. Crit Care Med 29: 367–373PubMedCrossRefGoogle Scholar
  35. 35.
    Haisjackl M, Luz G, Sparr H, et al (1997) The effect of progressive anemia on jejunal mucosal and serosal tissue oxygenation in pigs. Anesth Analg 84: 538–544PubMedGoogle Scholar
  36. 36.
    Germann R, Haisjackl M, Schwarz B, et al (1997) Dopamine and intestinal mucosal tissue oxygenation in a porcine model of haemorrhage. Br J Anaesth 79: 357–362PubMedCrossRefGoogle Scholar
  37. 37.
    Tugtekin IF, Radermacher P, Theisen M, et al (2001) Increased Ileal-mucosal-arterial PCO2 gap is associated with impaired villus microcirculation in endotoxic pigs. Intensive Care Med 27: 757–766PubMedCrossRefGoogle Scholar
  38. 38.
    Träger K, Radermacher P, Rieger KM, et al (2000) Norepinephrine and NG-monomethyl -L-arginine in porcine septic shock: effects on intestinal oxygen exchange and energy balance. Crit Care Med 28: 2007–2014PubMedCrossRefGoogle Scholar
  39. 39.
    Fournell A, Scheeren TWL, Schwarte LA (1998) Peep decreases oxygenation of the intestinal mucosa despite normalization of cardiac output. In: Hudetz and Bruley (ed) Oxygen Transport to Tissue XX. Plenum press, New York, pp 435–440Google Scholar
  40. 40.
    Pierie J-PEN, De Graaf PW, Poen H, Van der Tweel I, Obertop H (1994) Impaired healing of cervical oesophagastrostomies can be predicted by estimation of gastric serosal blood perfusion by laser doppler flowmetry. Eur J Surg 160: 599–603PubMedGoogle Scholar
  41. 41.
    Jacobi CA, Zieren HU, Zieren J, Muller JM (1998) Is tissue oxygen tension during esophagectomy a predictor of esophagogastric anastomotic ealing? J Surg Res 74: 161–164PubMedCrossRefGoogle Scholar
  42. 42.
    Assendelft van W (1970) Spectrophotometry of haemoglobin derivates. Thesis Rijks Universiteit, GroningenGoogle Scholar
  43. 43.
    De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microcvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166: 98–104PubMedCrossRefGoogle Scholar
  44. 44.
    Buwalda M, Ince C (2002) Opening the microcirculation: Can vasodilators be useful in sepsis. Intensive Care Med 28: 1208–1217Google Scholar
  45. 45.
    Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF (2002) Nitroglycerin in. septic shock after intravascular volume resucitation. Lancet 360: 1395–1396PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • M. P. Buise
  • J. van Bommel
  • C. Ince

There are no affiliations available

Personalised recommendations