Skip to main content

Management of Circulatory and Respiratory Failure Using Less Invasive Hemodynamic Monitoring

  • Conference paper
Intensive Care Medicine

Abstract

In patients instrumented with a central venous line and a thermodilution arterial catheter, the transpulmonary thermodilution technique — currently available on the “PiCCOplus” monitor (Pulsion Medical Systems, Munich, Germany) and on the “CCO” cardiac output module of Philips Medical Systems — allows the simultaneous assessment of valuable cardiovascular and dynamic heart-lung-interaction parameters. After central venous injection of an ice-cold or room-tempered saline bolus, a thermistor in the tip of the arterial catheter is used to measure the downstream temperature changes. The cardiac output is then calculated by the analysis of the thermodilution curve using a modified Stewart-Hamilton algorithm. The monitor also calculates the mean transit time and the exponential downslope time of the transpulmonary thermodilution curve. The product of cardiac output and mean transit time is the volume of distribution of the thermal indicator [1]. This volume of distribution, the so-called ‘intrathoracic thermal volume’, is made up of the intrathoracic blood volume (ITBV) and the extravascular lung water (EVLW) (Fig. 1). The product of cardiac output and exponential downslope time is the ‘pulmonary thermal volume’ [2], which is composed of the pulmonary blood volume and the EVLW (Fig. 1). Therefore, the volume of blood contained in the four heart chambers — called the global end-diastolic volume (GEDV) — is easily obtained as the difference between the intrathoracic thermal volume and the pulmonary thermal volume [3, 4] (Fig. 1). The ITBV has been shown to be quite consistently 25% greater than the GEDV [4]. Therefore, the ITBV is estimated as 1.25×GEDV and the EVLW as the difference between the intrathoracic thermal volume and the ITBV [4] (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meier P, Zierler KL (1954) On the theory of indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6: 731–744

    PubMed  CAS  Google Scholar 

  2. Newman EV, Merrel M, Genecin A, et al (1951) The dye dilution method for describing the central circulation. An analysis of factors shaping the time-concentration curves. Circulation 4: 735–746

    Article  PubMed  CAS  Google Scholar 

  3. Neumann P (1999) Extravascular lung water and intrathoracic blood volume: double versus single indicator dilution technique. Intensive Care Med 25: 216–219

    Article  PubMed  CAS  Google Scholar 

  4. Sakka SG, Rt hl CC, Pfeiffer UJ, Dewald O, Reichart B (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26: 180–187

    Article  PubMed  CAS  Google Scholar 

  5. Gödje O, Peyerl M, Seebauer T, Dewald O, Reichart B (1998) Reproducibility of double-indicator dilution measurements of intrathoracic blood volume compartments, extravascular lung water, and liver function. Chest 113: 1070–1077

    Article  PubMed  Google Scholar 

  6. Sakka SG, Reinhart K, Meier-hellmann A (1999) Comparison of pulmonary artery and arterial thermodilution cardiac output in critically ill patients. Intensive Care Med 25: 843–846

    Article  PubMed  CAS  Google Scholar 

  7. Goedje O, Hoeke K, Lichtwarck-Aschoff M, Faltchauser A, Lamm P, Reichart B (1999) Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution. Crit Care Med 27: 2407–2412

    Article  PubMed  CAS  Google Scholar 

  8. McLuckie A, Marsh M, Murdoch I, Anderson D (1996) A comparison of pulmonary and femoral artery thermodilution cardiac indices in paediatric intensive care patients. Acta Paediatr 85: 336–338

    Article  PubMed  CAS  Google Scholar 

  9. Tibby SM, Hatherill M, Marsh MJ, Morrison G, Anderson D, Murdoch IA (1997) Clinical validation of cardiac output measurements using femoral artery thermodilution with direct Fick in ventilated children and infants. Intensive Care Med 23: 987–991

    Article  PubMed  CAS  Google Scholar 

  10. Sakka SG, Reinhart K, Wegscheider K, Meier-Hellmann A (2000) Is the placement of a pulmonary artery catheter still justified solely for the measurement of cardiac output. J Cardiothorac Vasc Anesth 14: 119–124

    Article  PubMed  CAS  Google Scholar 

  11. Pauli C, Faller U, Genz T, Hennig M, Lorenz HP, Hess J (2002) Cardiac output determination in children: equivalence of the transpulmonary thermodilution method to the direct Fick principle. Intensive Care Med 28: 947–952

    Article  PubMed  CAS  Google Scholar 

  12. Iberti TJ, Fischer EP, Leibowitz AB, Panacek EA, Silverstein JH, Albertson TE (1990) A multicenter study of physician’s knowledge of the pulmonary artery catheter. JAMA 264: 2928–2932

    Article  PubMed  CAS  Google Scholar 

  13. Teboul JL, Pinsky MR, Mercat A, Kline RA (2000) Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Crit Care Med 28: 3631–3636

    Article  PubMed  CAS  Google Scholar 

  14. Calvin JE, Driedger AA, Sibbald WJ (1981) Does the pulmonary capillary wedge pressure predict left ventricular preload in critically ill patients? Crit Care Med 9: 437–443

    Article  PubMed  CAS  Google Scholar 

  15. Reuse C, Vincent JL, Pinsky MR (1990) Measurements of right ventricular volumes during fluid challenge. Chest 98: 1450–1454

    Article  PubMed  CAS  Google Scholar 

  16. Diebel LN, Wilson RF, Tagett MG, Kline RA (1992) End-diastolic volume. A better indicator of preload in the critically ill. Arch Surg 127: 817–822

    Article  PubMed  CAS  Google Scholar 

  17. Diebel L, Wilson RF, Heins J, Larky M, Warsow K, Wilson S (1994) End-diastolic volume versus pulmonary artery wedge pressure in evaluating cardiac preload in trauma patients. J Trauma 37: 950–955

    Article  PubMed  CAS  Google Scholar 

  18. Thys DM, Hillel Z, Goldman ME, Mindich BP, Kaplan JA (1987) A comparison of hemodynamic indices derived by invasive monitoring and two-dimensional echocardiography. Anesthesiology 67: 630–634

    Article  PubMed  CAS  Google Scholar 

  19. Cheung AT, Savino JS, Weiss SJ, Aukburg SJ, Berlin JA (1994) Echocardiographic and hemodynamic indexes of left ventricular preload in patients with normal and abnormal ventricular function. Anesthesiology 81: 376–387

    Article  PubMed  CAS  Google Scholar 

  20. Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89: 1313–1321

    Article  PubMed  CAS  Google Scholar 

  21. Tousignant CP, Walsh F, Mazer CD (2000) The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg 90: 351–355

    PubMed  CAS  Google Scholar 

  22. Lichtwarck-Aschoff M, Zeravik J, Pfeiffer UJ (1992) Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation. Intensive Care Med 18: 142–147

    Article  PubMed  CAS  Google Scholar 

  23. Preisman S, Pfeiffer U, Lieberman N, Perel A (1997) New monitors of intravascular volume: a comparison of arterial pressure waveform analysis and the intrathoracic blood volume. Intensive Care Med 23: 651–657

    Article  PubMed  CAS  Google Scholar 

  24. Sakka SG, Bredle DL, Reinhart K, Meier-Hellmann A (1999) Comparison between intrathoracic blood volume and cardiac filling pressures in the early phase of hemodynamic instability of patients with sepsis or septic shock. J Crit Care 14: 78–83

    Article  PubMed  CAS  Google Scholar 

  25. Goedje O, Seebauer T, Peyerl M, Pfeiffer UJ, Reichart B (2000) Hemodynamic monitoring by double-indicator dilution technique in patients after orthotopic heart transplantation. Chest 118: 775–781

    Article  PubMed  CAS  Google Scholar 

  26. Wiesenack C, Prasser C, Keyl C, Rodijg G (2001) Assessment of intrathoracic blood volume as an indicator of cardiac preload: single transpulmonary thermodilution technique versus assessment of pressure preload parameters derived from a pulmonary artery catheter. J Cardiothorac Vasc Anesth 15: 584–588

    Article  PubMed  CAS  Google Scholar 

  27. Reuter DA, Felbinger TW, Moerstedt K, et al (2002) Intrathoracic blood volume index measured by thermodilution for preload monitoring after cardiac surgery. J Cardiothorac Vasc Anesth 16: 191–195

    Article  PubMed  Google Scholar 

  28. Michard F, Alaya S, Zarka V, et al (2002) Effects of volume loading and dobutamine on transpulmonary thermodilution global end-diastolic volume. Intensive Care Med 28: 53

    Article  Google Scholar 

  29. McLuckie A, Bihari D (2000) Investigating the relationship between intrathoracic blood volume index and cardiac index. Intensive Care Med 26: 1376–1378

    Article  PubMed  CAS  Google Scholar 

  30. Buhre W, Kazmaier S, Sonntag H, Weyland A (2001) Changes in cardiac output and intra-thoracic blood volume: a mathematical coupling of data? Acta Anesthesiol Scand 45: 863–867

    Article  CAS  Google Scholar 

  31. Schiffmann H, Erdlenbruch B, Singer D, et al (2002) Assessment of cardiac output, intra-vascular volume status, and extravascular lung water by transpulmonary indicator dilution in critically ill neonates and infants. J Cardiothorac Vasc Anesth 16: 592–597

    Article  PubMed  Google Scholar 

  32. Michard F, and Teboul JL (2002) Predicting fluid responsiveness in ICU patients. A critical analysis of the evidence. Chest 121: 2000–2008

    Article  PubMed  Google Scholar 

  33. Perel A (1998) Assessing fluid responsiveness by the systolic pressure variation in mechanically ventilated patients. Anesthesiology 89: 1309–1310

    Article  PubMed  CAS  Google Scholar 

  34. Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4: 282–289

    Article  PubMed  CAS  Google Scholar 

  35. Perel A, Pizov R, Cotev S (1987) Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 67: 498–502

    Article  PubMed  CAS  Google Scholar 

  36. Michard F, Boussat S, Chemla D, et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162: 134–138

    Article  PubMed  CAS  Google Scholar 

  37. Godje O, Thiel C, Lamm P, et al (1999) Less invasive, continuous hemodynamic monitoring during minimally invasive coronary surgery. Ann Thorac Surg 68: 1532–1536

    Article  PubMed  CAS  Google Scholar 

  38. Buhre W, Weyland A, Kazmaier S, et al (1999) Comparison of cardiac output assessed by pulse contour analysis and thermodilution in patients undergoing minimally invasive direct coronary artery bypass grafting. J Cardiothorac Vasc Anesth 13: 437–440

    Article  PubMed  CAS  Google Scholar 

  39. Rodig G, Prasser C, Keyl C, Hobbahn J (1999) Continuous cardiac output measurement: pulse contour analysis versus thermodilution technique in cardiac surgical patients. Br J Anaesth 82: 525–530

    Article  PubMed  CAS  Google Scholar 

  40. Zollner C, Haller M, Weis M, et al (2000) Beat-to-beat measurement of cardiac output by intravascular pulse contour analysis: a prospective criterion standard study in patients after cardiac surgery. J Cardiothorac Vasc Anesth 14: 125–129

    Article  PubMed  CAS  Google Scholar 

  41. Goedje O, Hoeke K, Goetz AE, et al (2002) Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability. Crit Care Med 30: 52–58

    Article  Google Scholar 

  42. Della Rocca G, Costa MG, Pompei L, Coccia C, Pietropaoli P (2002) Continuous and intermittent cardiac output measurement: pulmonary artery catheter versus aortic transpulmonary technique. Br J Anaesth 88: 350–356

    Article  PubMed  Google Scholar 

  43. Berkenstadt H, Margalit N, Hadani M, et al (2001) Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg 92: 984–989

    Article  PubMed  CAS  Google Scholar 

  44. Reuter DA, Kilger E, Felbinger TW, Schmidt C, Lamm P, Goetz AE (2002) Optimising fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke volume variations: a comparison to aortic systolic pressure variations. Br J Anesth 88: 124–126

    Article  CAS  Google Scholar 

  45. Reuter DA, Felbinger TW, Schmidt C, et al (2002) Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28: 392–398

    Article  PubMed  Google Scholar 

  46. Robotham JL, Takata M, Berman M, Harasawa Y (1991) Ejection fraction revisited. Anesthesiology 74: 172–183

    Article  PubMed  CAS  Google Scholar 

  47. Baudendistel L, Shields JB, Kaminski DL (1982) Comparison of double indicator thermodilution measurements of extravascular lung water (EVLW) with radiographic estimation of lung water in trauma patients. J Trauma 22: 983–988

    Article  PubMed  CAS  Google Scholar 

  48. Halperin BD, Feeley TW, Mihm FG, Giles C, Guthaner DF, Blank NE (1985) Evaluation of the portable chest roentgenogram for quantitating extravascular lung water in critically ill adults. Chest 88: 649–652

    Article  PubMed  CAS  Google Scholar 

  49. Eisenberg PR, Hansbrough JR, Anderson D, Schuster DP (1987) A prospective study of lung water measurements during patient management in an intensive care unit. Am Rev Respir Dis 136: 662–668

    Article  PubMed  CAS  Google Scholar 

  50. Takeda A, Okumura S, Miyamoto T, Hagio M, Fujinaqo T (1995) Comparison of extravascular lung water volume with radiographic findings in dogs with experimentally increased permeability pulmonary edema. J Vet Med Sci 57: 481–485

    Article  PubMed  CAS  Google Scholar 

  51. Michard F, Zarka V, Alaya S, et al (2002) Extravascular lung water measurements in patients with ALI/ARDS. Intensive Care Med 28: 88

    Google Scholar 

  52. Pfeiffer U, Backus G, Blumel G, et al (1990) A fiberoptics based system for integrated monitoring of cardiac output, intrathoracic blood volume, extravascular lung water, 02 saturation, and a-v differences. In: Lewis F, Pfeiffer U (eds) Practical Applications of Fiberoptics in Critical Care Monitoring. Springer, Berlin, pp 114–125

    Chapter  Google Scholar 

  53. Lewis FR, Elings VB, Christensen JM (1992) Extravascular lung water measurements. In: Artigas A, Lemaire F, Suter PM, Zapol WM (eds) Adult Respiratory Distress Syndrome. Churchill, Livingstone, Edinburgh, pp 215–225

    Google Scholar 

  54. Schuster DP (1998) The evaluation of pulmonary edema by measuring lung water. In: Tobin MJ (ed) Principles and Practice of Intensive Care Monitoring. McGraw-Hill, New York, pp 693–705

    Google Scholar 

  55. Zeravik J, Pfeiffer UJ (1989) Efficacy of high frequency ventilation combined with volume controlled ventilation in dependency of extravascular lung water. Acta Anaesthesiol Scand 33: 568–574

    Article  PubMed  CAS  Google Scholar 

  56. Zevarik J, Borg U, Pfeiffer UJ (1990) Efficacy of pressure support ventilation dependent on extravascular lung water. Chest 97: 1412–1419

    Article  Google Scholar 

  57. Mitchell JP, Schuller D, Calandrino FS, Schuster DP (1992) Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis 145: 990–998

    Article  PubMed  CAS  Google Scholar 

  58. Bindels AJ, van der Hoeven JG, Meinders AE (1999) Pulmonary artery wedge pressure and extravascular lung water in patients with acute cardiogenic pulmonary edema requiring mechanical ventilation. Am J Cardiol 84: 1158–1163

    Article  PubMed  CAS  Google Scholar 

  59. von Spiegel T, Giannaris S, Wietasch GJK, et al (2002) Effects of dexamethasone on intra-vascular and extravascular fluid balance in patients undergoing coronary bypass surgery with cardiopulmonary bypass. Anesthesiology 96: 827–834

    Article  Google Scholar 

  60. Holm C, Tegeler J, Mayr M, et al (2002) Effect of crystalloid resuscitation and inhalation injury on extravascular lung water. Chest 121: 1956–1962

    Article  PubMed  Google Scholar 

  61. Boussat S, Jacques T, Levy B, et al (2002) Intravascular volume monitoring and extravascular lung water in septic patients with pulmonary edema. Intensive Care Med 28: 712–718

    Article  PubMed  Google Scholar 

  62. Katzenelson R, Preisman S, Berkenstadt H, et al (2001) Extravascular lung water measured by a single indicator technique in dogs. Correlation with gravimetric measurements. Crit Care Med 29: 155

    Google Scholar 

  63. Schuster DP (1995) Fluid management in ARDS: «keep them dry» or does it matter? Intensive Care Med 21: 101–103

    Article  PubMed  CAS  Google Scholar 

  64. Dantzker DR and Gutierrez G (1989) Effects of circulatory failure on pulmonary and tissue gas exchange. In: Scharf SM, Cassidy SS (eds) Heart-lung Interactions in Health and Disease. Marcel Dekker, New York, pp 983–1019

    Google Scholar 

  65. Hagen PT, Scholz DG, Edwards WD (1984) Incidence and size of patent foramen ovale during the first ten decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc 59: 17–20

    Article  PubMed  CAS  Google Scholar 

  66. Nootens MT, Berarducci LA, Kaufmann E, Devries S, Rich S (1993) The prevalence and significance of a patent foramen ovale in pulmonary hypertension. Chest 104: 1673–1675

    Article  PubMed  CAS  Google Scholar 

  67. Konstadt SN, Louie EK, Black S, Rao TL, Scanlon P (1991) Intraoperative detection of patent foramen ovale by transesophageal echocardiography. Anesthesiology 74: 212–216

    Article  PubMed  CAS  Google Scholar 

  68. Cujec B, Polasek P, Mayers I, Johnson D (1993) Positive end-expiratory pressure increases the right-to-left shunt in mechanically ventilated patients with patent foramen ovale. Ann Intern Med 119: 887–894

    Article  PubMed  CAS  Google Scholar 

  69. Swan HJC, Zapata-Diaz J, Wood EH (1953) Dye dilution curves in cyanotic congenital heart disease. Circulation 8: 70–81

    Article  PubMed  CAS  Google Scholar 

  70. Fellahi JL, Mourgeon E, Goarin JP, et al (1995) Inhaled nitric oxide-induced closure of a patent foramen ovale in a patient with acute respiratory distress syndrome and life-threatening hypoxemia. Anesthesiology 83: 635–638

    Article  PubMed  CAS  Google Scholar 

  71. Viquerat CE, Righetti A, Suter PM (1983) Biventricular volumes and function in patients with adult respiratory distress syndrome ventilated with PEEP. Chest 83: 509–514

    Article  PubMed  CAS  Google Scholar 

  72. Potkin RT, Hudson LD, Weaver LJ, Trobaugh G (1987) Effect of positive end-expiratory pressure on right and left ventricular function in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 135: 307–311

    PubMed  CAS  Google Scholar 

  73. Pizov R, Cohen M, Weiss Y, Segal E, Cotev S, Perel A (1996) Positive end-expiratory pressure-induced hemodynamic changes are reflected in the arterial pressure waveform. Crit Care Med 24: 1381–1387

    Article  PubMed  CAS  Google Scholar 

  74. Michard F, Chemla D, Richard C, et al (1999) Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 159: 935–939

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Michard, F., Perel, A. (2003). Management of Circulatory and Respiratory Failure Using Less Invasive Hemodynamic Monitoring. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5548-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5548-0_48

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5550-3

  • Online ISBN: 978-1-4757-5548-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics