Glucose, Free Fatty Acids, and Insulin Following Acute Myocardial Ischemia

  • H. B. van Wezel
  • S. W. M. de Jong
Conference paper


Adequate coronary revascularization may eventually lead to improved ventricular function, increased quality of life, and prolonged life expectancy, especially in patients with viable dysfunctional (hibernating) myocardium. In light of the growing cohort of elderly patients with chronic heart failure, future demand for surgical revascularization will be significant. However, in spite of numerous cardioprotective strategies, morbidity and mortality following coronary artery bypass grafting (CABG) is still high in patients with chronic heart failure. Therefore, in these patients, the benefit of revascularization has to be balanced against the risk of morbidity and mortality. Table 1 shows the high risks for octagenarians undergoing cardiac operations [1].


Coronary Artery Bypass Grafting Acute Myocardial Infarction Intensive Insulin Therapy Acute Myocardial Ischemia Cardiac Surgical Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gatti G, Cardu G, Lusa AM, Pugliese P (2002) Predictors of postoperative complications in high risk octogenarians undergoing cardiac operations. Ann Thorac Surg 74: 671–677PubMedCrossRefGoogle Scholar
  2. 2.
    Lopaschuk GD (1998) Treating ischemic heart disease by farmacologically improving cardiac energy metabolism. Am J Cardiol 82: 14k - 17kPubMedCrossRefGoogle Scholar
  3. 3.
    Lopaschuk GD, Stanley WC (1997) Glucose metabolism in the ischemic heart. Circulation 95: 313–315PubMedCrossRefGoogle Scholar
  4. 4.
    Sodi-Pallares D, Testelli MR, Fishleder BL, et al (1962) Effects of an intravenous infusion of a potassium-glucose-insulin solution on the electrocardiographic signs of myocardial infarction. Am J Cardiol 5: 166–181CrossRefGoogle Scholar
  5. 5.
    Malmberg K, Rydén L, Efendic S, et al (1995) Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI-study): effects on mortality at 1 year. J Am Coll Cardiol 26: 57–65PubMedCrossRefGoogle Scholar
  6. 6.
    Fath-Ordoubadi F, Beatt KJ (1997) Glucose-insulin-potassium therapy for treatment of acute myocardial infarction. An overview of randomized, placebo-controlled trials. Circulation 96: 1152–1156PubMedCrossRefGoogle Scholar
  7. 7.
    Diaz R, Paolasso EA, Piegas LS, et al (1998) Metabolic modulation of acute myocardial infarction. The ECLA glucose-insulin-potassium pilot trial. Circulation 98: 2227–2234PubMedCrossRefGoogle Scholar
  8. 8.
    Merhige ME, Ekas R, Mossberg K, Taegtmeyer H, Gould KL (1987) Catecholamine stimulation, substrate competition, and myocardial glucose uptake in conscious dogs assessed with positron emission tomography. Circ Res 61 (suppl II):II124–II129PubMedGoogle Scholar
  9. 9.
    Svedjeholm R, Huljebrant I, Hâkanson E, Vanhanen I (1995) Glutamate and high dose Glucose-Insulin-Potassium ( GIK) in the treatment of severe cardiac failure after cardiac operations. Ann Thorac Surg 59: 523–530Google Scholar
  10. 10.
    Lazar HL, Phillipides G, Fitzgerald C, Lancaster D, Shemin RJ, Apstein C (1997) Glucoseinsulin-potassium solutions enhance recovery after urgent coronary artery bypass grafting. J Thorac Cardiovasc Surg 113: 354–362PubMedCrossRefGoogle Scholar
  11. 11.
    Taegtmeyer H, Goodwin GW, Doenst T, Frasier OH (1997) Substrate metabolism as a determinant for postischemic functional recovery of the heart. Am J Cardiol 80: 3A - 10APubMedCrossRefGoogle Scholar
  12. 12.
    Lazar H, Chipkin S, Philippides G, Bao Y, Apstein C (2000) Glucose-Insulin-Potassium solutions improve outcomes in diabetics who have coronary artery operations. Ann Thorac Surg 70: 145–50PubMedCrossRefGoogle Scholar
  13. 13.
    Carson JL, Scholz PM, Chen AY, Peterson ED, Gold J, Schneider SH (2002) Diabetes mellitus increases short-term mortality and morbidity in patients undergoing coronary bypass graft surgery. J Am Coll Cardiol 40: 418–423PubMedCrossRefGoogle Scholar
  14. 14.
    Van den Berghe G, Wouters P, Weekers F, et al (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345: 1359–1367PubMedCrossRefGoogle Scholar
  15. 15.
    Pietersen HG, Langenberg CJM, Geskes G, et al (1999) Myocardial substrate uptake and oxidation during and after routine cardiac surgery. J Thorac Cardiovasc Surg 118: 71–80PubMedCrossRefGoogle Scholar
  16. 16.
    Chaney MA, Nikolov MP, Blakeman BP, Bakhas M (1999) Attempting to maintain normoglycemia during cardiopulmonary bypass with insulin may initiate postoperative hypoglycemia. Anesth Analg 89: 1091–1095PubMedCrossRefGoogle Scholar
  17. 17.
    Depre C, Vanoverschelde JLJ, Taegtmeyer H (1999) Glucose for heart. Circulation 99: 578–588PubMedCrossRefGoogle Scholar
  18. 18.
    Capes SE, Hunt D, Malmberg K, Gerstein HC (2000) Stress hyperglycemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet 335: 773–778CrossRefGoogle Scholar
  19. 19.
    Norhammar A, Rydén L, Malmberg K (1999) Admission plasma glucose. Independent risk factor for long-term prognosis after myocardial infarction even in non-diabetic patients. Diabetes Care 22: 1827–1831Google Scholar
  20. 20.
    Malmberg K, Norhammar A, Wedel H, Rydén L (1999) Glycometabolic state at admission: important risk marker of mortality in conventionally treated patients with diabetes mellitus and acute myocardial infarction. Circulation 99: 2626–2632PubMedCrossRefGoogle Scholar
  21. 21.
    Zindrou D, Taylor KN, Bagger JP (2001) Independent risk factor in non-diabetic women after coronary artery bypass grafting. Diabetes Care 24: 1634–1639PubMedCrossRefGoogle Scholar
  22. 22.
    Davies MJ, Lawrence IG (2002) DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infusion): theory and practice. Diabetes, Obesity and Metabolism 4: 289–295Google Scholar
  23. 23.
    Opie LH (1992) Cardiac metabolism-emergence, decline, and resurgence. Part II. Cardiovasc Res 26: 817–826PubMedCrossRefGoogle Scholar
  24. 24.
    Liu B, el Alaoui-Talibi Z, Clanachan AS, Schulz R, Lopaschuk GD (1996) Uncoupling of contractile function from mitochondrial TCA cycle activity and MVO2 during reperfusion of ischemic hearts. Am J Physiol 270 (1 Pt 2): H72 - H80PubMedGoogle Scholar
  25. 25.
    Neely JR, Rovetto MJ, Whitmer JT, Morgan HE (1973) Effects of ischemia on function and metabolism of the isolated working rat heart. Am J Physiol 225: 651–658PubMedGoogle Scholar
  26. 26.
    Jonassen AK, Brar BK, Mjos OD, Sack, MN, Latchman DS, Yellon DM (2000) Insulin administered at reoxygenation exerts a cardioprotective effect in myocytes by a possible antiapoptotic mechanism. J Moll Cell Cardiol 32: 757–764CrossRefGoogle Scholar
  27. 27.
    Gottlieb RA, Engler RL (1999) Apoptosis in myocardial ischemia-reperfusion. Ann NY Acad Sci 30: 412–426CrossRefGoogle Scholar
  28. 28.
    Ausma J, Thone F, Flameng W, et al (1998) Dedifferentiated cardiomyocytes from chronic hibernating myocardium are ischemia-tolerant. Moll Cell Biochem 186: 159–168CrossRefGoogle Scholar
  29. 29.
    Van den Hoff MJB, Van den Eijnde SM, Virâgh S, Moorman AFM (2000) Programmed cell death in the developing heart. Cardiovasc Res 45: 603–620PubMedCrossRefGoogle Scholar
  30. 30.
    Aebert H, Cornelius T, Birnbaum DE, Siegel AV, Riegger GA, Schunkert H (1997) Induction of early immediate genes and programmed cell death following cardioplegic arrest in human hearts. Eur J Cardiothorac Surg 12: 261–267PubMedCrossRefGoogle Scholar
  31. 31.
    Meyer C, Swaiger M (1997) Myocardial blood flow and glucose metabolism in diabetes mellitus. Am J Cardiol 80: 94A - 101APubMedCrossRefGoogle Scholar
  32. 32.
    Smith A, Grattan A, Harper M, Royston D, Riedel BJCJ (2002) Coronary revascularization: a procedure in transition from on-pump to off-pump? The role of glucose-insulin-potassium revisited in a randomized, placebo-controlled study. J Cardiothorac Vasc Anesth 16: 413–420PubMedCrossRefGoogle Scholar
  33. 33.
    Groban L, Butterworth J, Legault C, Rogers AT, Kon ND, Hammon JW (2002) Intraoperative insulin therapy does not reduce the need for inotropic or antiarrhythmic therapy after cardiopulmonary bypass. J Cardiothorac Vasc Anesth 16: 405–412PubMedCrossRefGoogle Scholar
  34. 34.
    Lell W, Nielsen VG, McGiffin DC, Schmidt FE, Kirklin JK, Stanley AW (2002) Glucose-insulin-potassium infusion for myocardial protection during off-pump coronary artery surgery. Ann Thorac Surg 73: 1246–1252PubMedCrossRefGoogle Scholar
  35. 35.
    Bruemmer-Smith S, Avidan MS, Harris B, et al (2002) Glucose, insulin and potassium for heart protection during cardiac surgery. Br J Anaesth 88: 489–495PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • H. B. van Wezel
  • S. W. M. de Jong

There are no affiliations available

Personalised recommendations