Inhalation Therapy during Mechanical Ventilation

  • E. Kondili
  • C. Alexopoulou
  • D. Georgopoulos
Conference paper

Abstract

Aerosol medications are commonly used in mechanically ventilated patients. Several classes of drugs with different properties and indications may be given by inhalation. In all cases, compared to the systemic route, inhaled therapy has the advantage that for a given therapeutic response, the drug dose is several-fold lower, while systemic absorption is negligible, thus, greatly minimizing the side effects. In addition, for some medications the systemic route either causes non-acceptable side effects or results in considerably inferior therapeutic response, rendering the inhaled route the method of choice of drug administration. Bronchodilators, corticosteroids, vasoactive drugs, surfactant, antibiotics, helium, and perfluorocarbons are the medications that can be given by inhalation during mechanical ventilation.

Keywords

Acute Respiratory Distress Syndrome Fluticasone Propionate Respir Crit Meter Dose Inhaler Inhalation Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dhand R, Tobin MJ (1997) Inhaled bronchodilator therapy in mechanically ventilated patients. Am J Respir Crit Care Med 156: 3–10PubMedCrossRefGoogle Scholar
  2. 2.
    Kondili E, Georgopoulos D (2002) Aerosol medications. Respir Care Clin 8: 309–334CrossRefGoogle Scholar
  3. 3.
    Mouloudi E, Katsanoulas K, Anastasaki M, Hoing S, Georgopoulos D (1999) Bronchodilator delivery by metered-dose inhaler in mechanically ventilated COPD patients: influence of tidal volume. Intensive Care Med 25: 1215–1221PubMedCrossRefGoogle Scholar
  4. 4.
    Mouloudi E, Katsanoulas K, Anastasaki M, Askitopoulou E, Georgopoulos D (1998) Bronchodilator delivery by metered-dose inhaler in mechanically ventilated COPD patients: influence of end-inspiratory pause. Eur Respir J 12: 165–169PubMedCrossRefGoogle Scholar
  5. 5.
    Mouloudi E, Prinianakis G, Kondili E, Georgopoulos D (2000) Bronchodilator delivery by metered-dose inhaler in mechanically ventilated COPD patients: influence of flow pattern. Eur Respir J 16: 263–268PubMedCrossRefGoogle Scholar
  6. 6.
    Mouloudi E, Prinianakis G, Kondili E, Georgopoulos D (2001) Effect of inspiratory flow rate on beta2-agonist induced bronchodilation in mechanically ventilated COPD patients. Intensive Care Med 27: 42–46PubMedCrossRefGoogle Scholar
  7. 7.
    Mouloudi E, Malliotakis Ch, Kondili E, Kafetzakis A, Georgopoulos D (2001) Duration of salbutamol-induced bronchodilation delivered by meter-dose inhaler in mechanically ventilated patients with chronic obstructive pulmonary disease. Monaldi Arch Chest Dis 56: 189–194PubMedGoogle Scholar
  8. 8.
    Duarte AG, Momi K, Bidani A (2000) Bronchodilator therapy with metered-dose inhaler and spacer versus nebulizer in mechanically ventilated patients: comparison of magnitude and duration of response. Respir Care 45: 817–823PubMedGoogle Scholar
  9. 9.
    Crandall ED, Matthay MA (2001) Alveolar epithelial transport. Basic science to clinical medicine. Am J Respir Crit Care Med 163: 1021–1029Google Scholar
  10. 10.
    Ware LB, Matthay MA (2001) Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 163: 1376–1383PubMedCrossRefGoogle Scholar
  11. 11.
    Berthiaume Y, Staub NC, Matthay MA (1987) Beta-adrenergic agonists increase lung liquid clearance in anesthetized sheep. J Clin Invest 79: 335–343PubMedCrossRefGoogle Scholar
  12. 12.
    Frank JA, Wang Y, Osorio O, Matthay MA (2000) Beta-adrenergic agonist therapy the resolution of hydrostatic pulmonary edema in sheep and rats. J Appl Physiol 89: 1255–1265PubMedGoogle Scholar
  13. 13.
    Garat C, Meignan M, Matthay MA, Luo DF, Jayr C (1997) Alveolar epithelial fluid clearance mechanisms are intact after moderate hyperoxic lung injury in rats. Chest 111: 1381–1388PubMedCrossRefGoogle Scholar
  14. 14.
    Sakuma T, Folkesson HG, Suzuki S, Okaniwa G, Fujimura S, Matthay MA (1997) Betaadrenergic agonist stimulated alveolar fluid clearance in ex vivo human and rat lungs. Am J Respir Grit Care Med 155: 506–512CrossRefGoogle Scholar
  15. 15.
    Verghese GM, Ware LB, Matthay BA, Matthay MA (1999) Alveolar epithelial fluid transport and the resolution of clinically severe hydrostatic pulmonary edema. J Appl Physiol 87: 1301–1312PubMedGoogle Scholar
  16. 16.
    Atabai K, Ware LB, Snider ME, et al (2002) Aerosolized ß2-adrenergic agonists achieve therapeutic levels in the pulmonary edema fluid of ventilated patients with acute respiratory failure. Intensive Care Med 28: 705–711PubMedCrossRefGoogle Scholar
  17. 17.
    Rubini F, Rambulla C, Nava S (1994) Acute effect of corticosteroids on respiratory mechanics in mechanically ventilated patients with chronic airflow obstruction and acute respiratory failure. Am J Respir Crit Care Med 149: 306–310PubMedCrossRefGoogle Scholar
  18. 18.
    Nava S, Compagnoni ML (2000) Controlled short-term trial of fluticasone propionate in ventilator-dependent patients with COPD. Chest 118: 990–999PubMedCrossRefGoogle Scholar
  19. 19.
    Moore RD, Smith CR, Lietman PS (1984) Association of aminoglycoside plasma levels with therapeutic outcome in gram-negative pneumonia. Am J Med 77: 657–662PubMedCrossRefGoogle Scholar
  20. 20.
    Pennington JE (1981) Penetration of antibiotics into respiratory secretions. Rev Infect Dis 3: 67–73PubMedCrossRefGoogle Scholar
  21. 21.
    Rouby JJ, Poète P, Martin de Lassale E, et al (1994) Prevention of Gram negative nosocomial bronchopneumonia by intratracheal colistin in critically ill patients. Histologic and bacteriologic study. Intensive Care Med 20: 187–192Google Scholar
  22. 22.
    Klastersky J, Geuning C, Mouawad E, Daneau D (1972) Endotracheal gentamicin in bronchial infections in patients with tracheostomy. Chest 61: 117–120PubMedCrossRefGoogle Scholar
  23. 23.
    Ilowite JS, Gorvoy JD, Smaldone GC (1987) Quantitative deposition of aerosolized gentamicin in cystic fibrosis. Am Rev Respir Dis 136: 1445–1449PubMedCrossRefGoogle Scholar
  24. 24.
    Goldstein I, Wallet F, Robert J, et al (2002) Lung tissue concentrations of nebulized amikacin during mechanical ventilation in piglets with healthy lungs. Am J Respir Crit Care Med 165: 171–175PubMedCrossRefGoogle Scholar
  25. 25.
    Palmer LB, Smaldone GC, Simon SR, O’Riordan TG, Cuccia A (1998) Aerosolized antibiotics in mechanically ventilated patients: delivery and response. Crit Care Med 26: 31–39PubMedCrossRefGoogle Scholar
  26. 26.
    Barker AF, Couch L, Fiel SB, et al (2000) Tobramycin solution for inhalation reduces sputum Pseudomonas aeroginosa density in bronchiectacis. Am J Respir Crit Care Med 162: 481–485PubMedCrossRefGoogle Scholar
  27. 27.
    Zimmerman JL, Hanania NA (1998) Vasodilators in mechanical ventilated patients. Crit Care Clin 14: 611–627PubMedCrossRefGoogle Scholar
  28. 28.
    McIntyre RC, Pulido EJ, Bensard DD, Gotfriedet MA, Ilowite J, Meyer KC (2000) Thirty years of clinical trials in acute respiratory distress syndrome. Crit Care Med 28: 3314–3331PubMedCrossRefGoogle Scholar
  29. 29.
    Puybasset L, Roudyt JJ, Mourgeon E, et al (1995) Factors influencing cardiopulmonary effects of inhaled nitric oxide in acute respiratory failure. Am J Respir Crit Care 152: 318–328CrossRefGoogle Scholar
  30. 30.
    Christenson J, Lavoie A, O’Connor M, Bhorade S, Pohlman A, Hall JB (2000) The incidence and pathogenesis of cardiopulmonary deterioration after abrupt withdrawal of inhaled nitric oxide. Am J Respir Crit Care Med 161: 1443–1449PubMedCrossRefGoogle Scholar
  31. 31.
    Domenighetti G, Stricker H, Waldispuehl B (2001) Nebulized prostacyclin in acute respiratory distress syndrome: impact of primary (pulmonary injury) and secondary (extrapulmonary injury) disease on gas exchange response. Crit Care Med 29: 57–62PubMedCrossRefGoogle Scholar
  32. 32.
    Muller B, Schmidtke M, Witt W (1987) Action of the stable prostacyclin analogue iloprost on microvascular tone and permeability in the hamster cheek pouch. Prostaglandins Leukot Med 29: 187–198PubMedCrossRefGoogle Scholar
  33. 33.
    Gregory TJ, Longmore WJ, Moxley MA, et al (1991) Surfactant chemical composition and biophysical activity in acute respiratory distress syndrome. J Clin Invest 88: 1976–1981PubMedCrossRefGoogle Scholar
  34. 34.
    Lewis JF, Jobe AH (1993) Surfactant in adult respiratory distress syndrome. Am Rev Respir Dis 147: 218–233PubMedCrossRefGoogle Scholar
  35. 35.
    Vazquez de GF, Lachmann RA, Gommers D, Verbrugge SJ, Haitsma J, Lachmann B (2001) Treatment of ventilation-induced lung injury with exogenous. Intensive Care Med 27: 559565Google Scholar
  36. 36.
    Haitsma JJ, Uhlig S, Lachmann U, Verbrugge SJ, Poelma DL, Lachmann B (2002) Exogenous surfactant reduces ventilator-induced decompartmentalization of tumor necrosis factor alpha in absence of positive end - expiratory pressure. Intensive Care Med 28: 11311137Google Scholar
  37. 37.
    Frerking I, Gunther A, Seeger W, P Ison U (2001) Pulmonary surfactant: functions abnormalities and therapeutic options. Intensive Care Med 27: 1699–1717PubMedCrossRefGoogle Scholar
  38. 38.
    Schermuly R, Gunther F, Weissmann N, et al (2000) Differential impact of ultrasonic nebulized versus instilled surfactant on ventilation perfusion mismatch V A/Q) in a model of acute lung injury. Am J Respir Crit Care Med 16: 152–159CrossRefGoogle Scholar
  39. 39.
    Anzueto A, Baughman RP, Kalpalatha K, et al (1996) Aerosolized surfactant in adults with sepsis–induced acute respiratory distress syndrome. N Engl J Med 334: 1417–1422PubMedCrossRefGoogle Scholar
  40. 40.
    Kerr CL, Ito Y, Manwell SE, et al (1998) Effects of surfactant distribution and ventilation strategies on the efficacy of exogenous surfactant. J Appl Physiol 85: 676–684PubMedGoogle Scholar
  41. 41.
    Tassaux D, Jolliet P, Roeseler J, Chevrolet JC (2000) Effects of helium-oxygen on intrinsic positive end-expiratory pressure in intubated and mechanicalventilated patients with severe chronic obstructive pulmonary disease. Crit Care Med 28: 2721–2728PubMedCrossRefGoogle Scholar
  42. 42.
    Jaber S, Fodil R, Carlucci A, et al (2000) Noninvasive ventilation with helium-oxygen in acute exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 161: 1191–1200PubMedCrossRefGoogle Scholar
  43. 43.
    Jaber S, Carlucci A, Boussarsar M, et al (2001) Heliox–oxygen in the postextubation period decreases inspiratory effort. Am J Respir Crit Care Med 164: 633–637PubMedCrossRefGoogle Scholar
  44. 44.
    Goode ML, Fink JB, Dhand R, Tobin MJ (2001) Improvement in aerosol delivery with helium-oxygen mixtures during mechanical ventilation. Am J Respir Crit Care Med 163: 109–114PubMedCrossRefGoogle Scholar
  45. 45.
    Tassaux D, Jolliet P, Thouret JM, Roeseler J, Dorne R, Chervolet JC (1998) Calibration of seven ICU ventilators for mechanical ventilation with helium-oxygen mixtures. Crit Care Med 26: 290–295CrossRefGoogle Scholar
  46. 46.
    Hirschl R, Pranikoff R, Wise C, et al (1996) Initial experience with partial liquid ventilation in adult patients with the acute respiratory distress syndrome. JAMA 275: 383–389PubMedCrossRefGoogle Scholar
  47. 47.
    Kandler M, von der Hardt I, Schoof E, Dotsch J, Rascher W (2001) Persistent improvement of gas exchange and lung mechanics by aerosolized perfluorocarbon. Am J Respir Crit Care Med 164: 31–35PubMedCrossRefGoogle Scholar
  48. 48.
    Hubler M, Souders JE, Shade ED, Polissar NL, Schimmel C, Hlastala MP (2001) Effects of vaporized perfluorocarbon on pulmonary blood flow and ventilation /perfusion distribution in a model of acute respiratory distress syndrome. Anesthesiology 95: 1414–1421PubMedCrossRefGoogle Scholar
  49. 49.
    Bleyl J, Ragaller M, Tscho U, et al (1999) Vaporized perfluorocarbon improves oxygenation and pulmonary function in an ovine model of acute respiratory distress syndrome. Anesthesiology 91: 461–469PubMedCrossRefGoogle Scholar
  50. 50.
    Davis MW, Dunster KR (2002) Effect of perfluorocarbon (perflurooctyl bromide) vapor on tidal volume measurement during partial liquid ventilation. Crit Care Med 30: 1123–1125CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • E. Kondili
  • C. Alexopoulou
  • D. Georgopoulos

There are no affiliations available

Personalised recommendations