Skip to main content

High Frequency Oscillation (HFO): Physiological Basis for a Potentially ‘Optimal’ Protective Ventilatory Strategy

  • Conference paper
Intensive Care Medicine

Abstract

Acute respiratory distress syndrome (ARDS) is a primary cause of death in ICUs with a reported mortality ranging between 30–60% [1, 2]. Intrapulmonary shunt, increased dead space, and reduced lung compliance are the main pulmonary patho-physiological alterations leading to multiple organ failure (MOF) and ultimately death. Conventional mechanical ventilation is effective in delivering oxygen and providing adequate carbon dioxide clearance, both in volume-cycled and pressure-limited modes. However experimental and clinical data show that conventional ventilation may stress the alveolar wall resulting in further pulmonary injury (ventilator induced lung injury [VILI]) [3, 4]. Tidal volume (VT), positive end-expiratory pressure (PEEP), and inspiratory oxygen fraction (FiO2) are the three key ventilator settings during conventional ventilation. Strong evidence suggests that reducing VT and optimizing PEEP prevents VILI, providing a lung protective strategy [5, 6]. However, ‘conventional’ protective ventilatory strategies are usually accompanied by side effects such as use of high respiratory rate, hypercapnia, hemodynamic impairment, etc. [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sloane PJ, Gee MH, Gottlieb JE, et al (1992) A multicenter registry of patients with acute respiratory distress syndrome. Physiology and outcome. Am Rev Respir Dis 146: 419–426

    Google Scholar 

  2. Zilberberg MD, Epstein SK (1998) Acute lung injury in the medical ICU: comorbid conditions, age, etiology, and hospital outcome. Am J Respir Crit Care Med 157: 1159–1164

    Article  PubMed  CAS  Google Scholar 

  3. Slutsky AS, Tremblay LN (1998) Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 157: 1721–1725

    Article  PubMed  CAS  Google Scholar 

  4. Slutsky AS (1999) Lung injury caused by mechanical ventilation. Chest 116: 9S - 15S

    Article  PubMed  CAS  Google Scholar 

  5. Slutsky AS (1993) Mechanical ventilation. American College of Chest Physicians’ Consensus Conference. Chest 104: 1833–1859

    Article  PubMed  CAS  Google Scholar 

  6. Ferguson ND, Stewart TE (2001) The use of high-frequency oscillatory ventilation in adults with acute lung injury. Respir Care Clin N Am 7: 647–661

    Article  PubMed  CAS  Google Scholar 

  7. Brower RG, Ware LB, Berthiaume Y, Matthay MA (2001) Treatment of ARDS. Chest 120: 1347–1367

    Article  PubMed  CAS  Google Scholar 

  8. Tremblay LN, Slutsky AS (1998) Ventilator-induced injury: from barotrauma to biotrauma. Proc Assoc Am Physicians 110: 482–488

    PubMed  CAS  Google Scholar 

  9. Ranieri VM, Giunta F, Suter PM, Slutsky AS (2000) Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA 284: 43–44

    Article  PubMed  CAS  Google Scholar 

  10. Tremblay LN, Miatto D, Hamid Q, Govindarajan A, Slutsky AS (2002) Injurious ventilation induces widespread pulmonary epithelial expression of tumor necrosis factor-alpha and interleukin-6 messenger RNA. Crit Care Med 30: 1693–1700

    Article  PubMed  CAS  Google Scholar 

  11. Boussarsar M, Thierry G, Jaber S, Roudot-Thoraval F, Lemaire F, Brochard L (2002) Relationship between ventilatory settings and barotrauma in the acute respiratory distress syndrome. Intensive Care Med 28: 406–413

    Article  PubMed  Google Scholar 

  12. Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137: 1159–1164

    Google Scholar 

  13. Chiumello D, Pristine G, Slutsky AS (1999) Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med 160: 109–116

    Article  PubMed  CAS  Google Scholar 

  14. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99: 944–952

    Article  PubMed  CAS  Google Scholar 

  15. Slutsky AS, Drazen FM, Ingram RH Jr, et al (1980) Effective pulmonary ventilation with small-volume oscillations at high frequency. Science 209: 609–671

    Article  PubMed  CAS  Google Scholar 

  16. Slutsky AS, Brown R, Lehr J, Rossing T, Drazen JM (1981) High-frequency ventilation: a promising new approach to mechanical ventilation. Med Instrum 15: 229–233

    PubMed  CAS  Google Scholar 

  17. Rimensberger PC, Pristine G, Mullen BM, Cox PN, Slutsky AS (1999) Lung recruitment during small tidal volume ventilation allows minimal positive end-expiratory pressure without augmenting lung injury. Grit Care Med 27: 1940–1945

    Article  CAS  Google Scholar 

  18. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: 1301–1308

    Google Scholar 

  19. Stewart TE, Meade MO, Cook DJ, et al (1998) Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressure-and Volume-Limited Ventilation Strategy Group. N Engl J Med 338: 355–361

    Google Scholar 

  20. Brochard L, Roudot-Thoraval F, Roupie E, et al (1998) Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med 158: 1831–1838

    Google Scholar 

  21. Amato MB, Barbas CS, Medeiros CM, et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338: 347–354

    Article  PubMed  CAS  Google Scholar 

  22. Ranieri VM, Suter PM, Tortorella C, et al (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282: 54–61

    Article  PubMed  CAS  Google Scholar 

  23. Hubmayr RD (2002) Perspective on lung injury and recruitment: a skeptical look at the opening and collapse story. Am J Respir Crit Care Med 165: 1647–1653

    Article  PubMed  Google Scholar 

  24. dos Santos CC, Slutsky AS (2001) Overview of high-frequency ventilation modes, clinical rationale, and gas transport mechanisms. Respir Care Clin N Am 7: 549–575

    Article  PubMed  Google Scholar 

  25. Oberg PA, Sjostrand U (1969) Studies of blood-pressure regulation. I. Common-carotidartery clamping in studies of the carotid-sinus baroreceptor control of the systemic blood pressure. Acta Physiol Scand 75: 276–286

    Google Scholar 

  26. Stewart TE, Slutsky AS (1995) Mechanical ventilation: A shifting philosophy. Curr Opin Crit Care 1: 49–56

    Google Scholar 

  27. HIFI Study Group (1989) High frequency oscillatory ventilation compared with conventional mechanical ventilation in the treatment of respiratory failure in preterm infants. N Engl J Med 320: 88–93

    Article  Google Scholar 

  28. Arnold JH, Hanson JH, Toro-Figuero LO, Gutierrez J, Berens RJ, Anglin DL (1994) Prospective, randomized comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. Crit Care Med 22: 1530–1539

    PubMed  CAS  Google Scholar 

  29. Gerstmann DR, Minton SD, Stoddard RA, et al (1996) The Provo multicenter high-frequency oscillatory ventilation trial improved pulmonary and clinical outcome in respiratory distress syndrome. Pediatrics 98: 1044–1057

    PubMed  CAS  Google Scholar 

  30. Fort P, Farmer C, Westerman J, et al (1997) High-frequency oscillatory ventilation for adult respiratory distress syndrome-a pilot study. Grit Care Med 25: 937–947

    Article  CAS  Google Scholar 

  31. Mehta S, Lapinsky SE, Hallett DC, et al (2001) A prospective trial of high frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Crit Care Med 29: 1360–1369

    Article  PubMed  CAS  Google Scholar 

  32. Derdak S, Mehta S, Stewart TE, et al (2002) High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am J Respir Grit Care Med 166: 801–808

    Article  Google Scholar 

  33. MacDonald R, Stewart TE, Lapinsky S, Aubin M, Hallett D, Mehta S (2000) Oxygenation response to inhaled nitric oxide (INO) when combined with high frequency oscillatory ventilation (HFOV). Am J Respir Crit Care Med 161: A47 (abst)

    Google Scholar 

  34. Varkul MD, Stewart TE, Lapinsky SE, Ferguson ND, Mehta S (2001) Successful use of combined high-frequency oscillatory ventilation, inhaled nitric oxide, and prone positioning in the acute respiratory distress syndrome. Anesthesiology 95: 797–799

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rossi, A., Stewart, T.E., Ranieri, V.M. (2003). High Frequency Oscillation (HFO): Physiological Basis for a Potentially ‘Optimal’ Protective Ventilatory Strategy. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5548-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5548-0_28

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5550-3

  • Online ISBN: 978-1-4757-5548-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics