Skip to main content

Expiratory Flow Limitation in Mechanically Ventilated Patients

  • Conference paper
Intensive Care Medicine

Abstract

The highest pulmonary ventilation that a subject can achieve is ultimately limited by the highest flow rates that can be generated. Most normal subjects and endurance-trained athletes do not exhibit expiratory flow limitation even during maximal exercise [1, 2]. In contrast, patients with chronic obstructive pulmonary disease (COPD) may exhibit expiratory flow limitation even at rest, as first reported by Hyatt [1]. This is based on the observation that, even at rest, many patients with severe COPD often breathe tidally along their maximal expiratory flow-volume (MEFV) curve (Fig. 1) [3]. The presence of expiratory flow limitation during tidal breathing promotes dynamic hyperinflation with a concurrent increase in inspiratory work, functional impairment of inspiratory muscles, and adverse effects on hemodynamics and dyspnea [4, 5]. It also plays a central role in causing acute ventilatory failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hyatt RE (1961) The interrelationship of pressure, flow and volume during various respiratory maneuvers in normal and emphysematous patients. Am Rev Respir Dis 85: 676–83

    Google Scholar 

  2. Mota S, Casan P, Drobnic F, et al (1999) Expiratory flow limitation during exercise in competition cyclists. J Appl Physiol 86: 611–616

    PubMed  CAS  Google Scholar 

  3. Leaver DG, Pride NB (1971) Flow-volume curves and expiratory pressures during exercise in patients with chronic airways obstruction. Scand J Respir Dis 77 (suppl): 23–27

    CAS  Google Scholar 

  4. Gottfried SB (1991) The role of PEEP in the mechanically ventilated COPD patient. In: Roussos C, Marini JJ (eds) Ventilatory Failure. Springer, Berlin, pp 392–418

    Chapter  Google Scholar 

  5. Eltayara L, Becklake MR, Volta CA, Milic-Emili J (1996) Relationship of chronic dyspnea and flow limitation in COPD patients. Am J Respir Crit Care Med 154: 1726–1734

    Article  PubMed  CAS  Google Scholar 

  6. Armaganidis A, Stavrakaki-Kallergi K, Koutsoukou A, et al (2000) Intrinsic PEEP in mechanically ventilated patients with and without tidal expiratory flow limitation. Crit Care Med 28: 3837–3842

    Article  PubMed  CAS  Google Scholar 

  7. Koutsoukou A, Armaganidis A, Stavrakaki-Kallergi K, et al (2000) Expiratory flow limitation and intrinsic positive end-expiratory pressure at zero positive end-expiratory pressure in patients with adult respiratory distress syndrome. Am J Respir Crit Care Med 161: 15901596

    Google Scholar 

  8. Koutsoukou A, Bekos V, Sotiropoulou C, et al (2002) Effects of positive end-expiratory pressure on gas exchange and expiratory flow limitation in adult respiratory distress syndrome. Crit Care Med 30: 1941–1949

    Article  PubMed  Google Scholar 

  9. Agostoni E, Mead J (1964) Statics of the respiratory system. In: Macklem PT, Mead J (eds) Handbook of Physiology–Section 3. Vol I The Respiratory System: Mechanics of Breathing. American Physiological Society, Bethesda, pp 387–409

    Google Scholar 

  10. Valta P, Corbeil C, Lavoie A, et al (1994) Detection of expiratory flow limitation during mechanical ventilation. Am J Respir Crit Care Med 150: 1131–1137

    Article  Google Scholar 

  11. Koulouris NG, Dimopoulou I, Valta P, et al (1997) Detection of expiratory flow limitation during exercise in COPD patients. J Appl Physiol 82: 723–731.

    PubMed  CAS  Google Scholar 

  12. Diaz O, Villafranca C, Ghezzo H, et al (2000) Exercise tolerance in COPD patients with and without tidal expiratory flow limitation at rest. Eur Respir J 16: 269–275

    Article  PubMed  CAS  Google Scholar 

  13. Volta CA, Ploysongsang Y, Eltayara L, et al (1996) A simple method to monitor performance of forced vital capacity. J Appl Physiol 80: 693–698

    PubMed  CAS  Google Scholar 

  14. Macklem P, Mead J (1968) Factors determining maximum expiratory flow in dogs. J Appl Physiol 25: 159–169

    PubMed  CAS  Google Scholar 

  15. Macklem PT, Proctor DF, Hogg JC (1969) The stability of peripheral airways. Respir Physiol 8: 191–203

    Article  Google Scholar 

  16. Ferretti A, Gampiccolo P, Cavalli A, et al (2001) Expiratory flow limitation and orthopnea in massively obese subjects. Chest 119: 1401–1408

    Article  PubMed  CAS  Google Scholar 

  17. Castile R, Mead J, Jackson A, et al (1982) Effect of posture on flow-volume curve configuration in normal humans. J Appl Physiol; 53: 1175–1183

    PubMed  CAS  Google Scholar 

  18. Volta CA, Alvisi R, Marangoni E, et al (2001) Responsiveness to intravenous administration of salbutamol in chronic obstructive pulmonary disease patients with acute respiratory failure. Intensive Care Med 27: 1949–1953

    Article  PubMed  CAS  Google Scholar 

  19. Gattinoni L, Pesenti A, Avalli L, et al (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Am Rev Respir Dis 136: 730–736

    Article  PubMed  CAS  Google Scholar 

  20. Reinoso MA, Gracey DR, Hubmayr RD (1993) Interrupter mechanics of patients admitted to a chronic ventilator dependency unit. Am Rev Respir Dis 148: 127–131

    Article  PubMed  CAS  Google Scholar 

  21. Kimball WR, Leith DE, Robins AG (1982) Dynamic hyperinflation and ventilator dependence in chronic obstructive pulmonary disease. Am Rev Respir Dis 126: 991–995

    PubMed  CAS  Google Scholar 

  22. Smith TC, Marini JJ (1988) Impact of PEEP on lung mechanics and work of breathing in severe airflow obstruction. J Appl Physiol 65: 1488–1499

    PubMed  CAS  Google Scholar 

  23. Petrof BJ, Legare M, Goldberg P, et al (1990) Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis 141: 281–289

    Article  PubMed  CAS  Google Scholar 

  24. Van den Berg B, Stam H, Bogaard JM (1991) Effects of PEEP on respiratory mechanics in patients with COPD on mechanical ventilation. Eur Respir J 4: 561–567

    PubMed  Google Scholar 

  25. Tan IKS, Bhatt YH, Oh TE (1993) Effects of PEEP on dynamic hyperinflation in patients with airflow limitation. Br J Anaesth 70: 267–272

    Article  PubMed  CAS  Google Scholar 

  26. Koutsoukou A, Armaganidis A, Papakonstantinou K, et al (2000) Expiratory flow limitation and intrinsic positive end-expiratory pressure in sedated paralyzed morbidly obese patients. Am J Respir Crit Care Med 161: 390a (abst)

    Google Scholar 

  27. Koutsoukou A, Milic-Emili J, Armaganidis A, et al (2000) Effect of bronchodilators on PEEPi and respiratory mechanics in mechanically ventilated morbidly obese postoperative patients with expiratory flow limitation. Eur Respir J 16: 155s (abst)

    Google Scholar 

  28. Robertson B (1984) Lung Surfactant. In: Robertson B, Van Golde L, Batenburg J (eds) Pulmonary Surfactant. Elsevier, Amsterdam, pp 384–417

    Google Scholar 

  29. Muscedere JM, Mullen JB, Gun K, et al (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149: 1327–1334

    Article  PubMed  CAS  Google Scholar 

  30. D’Angelo E, Pecchiari M, Baraggia P, et al (2002) Low volume ventilation induces peripheral airways injury and increased airway resistance in normal open-chest rabbits. J Appl Physiol 92: 949–956

    PubMed  Google Scholar 

  31. Dreyfuss D, Soler P, Basset F, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137: 1159–1164

    Google Scholar 

  32. Dreyfuss D, Basset F, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132: 880–884

    PubMed  CAS  Google Scholar 

  33. Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28: 596–608

    PubMed  CAS  Google Scholar 

  34. Pelosi P, Ravagnan I, Giurati PG, et al (1999) Positive end-expiratory pressure improves respiratory function in obese but not in normal subjects during anesthesia and paralysis. Anesthesiology 91: 1221–1231

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koutsoukou, A., Roussos, C., Milic-Emili, J. (2003). Expiratory Flow Limitation in Mechanically Ventilated Patients. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5548-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5548-0_26

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5550-3

  • Online ISBN: 978-1-4757-5548-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics