Skip to main content

Supplementing Arginine during Sepsis: from Theory to Clinical Practice

  • Conference paper
Intensive Care Medicine
  • 329 Accesses

Abstract

Arginine has important roles in the transport, storage, and excretion of nitrogen by disposition of ammonia via the urea cycle. Moreover, arginine is pivotal in metabolic functions since it serves as a precursor of nitric oxide (NO), polyamines, and other molecules. Humans obtain arginine from dietary sources and by endogenous synthesis. In humans, arginine is considered a conditionally essential amino acid since stress conditions with increased arginine demand such as sepsis and inflammation indicate that exogenous arginine is required for a positive nitrogen balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaumier L, Castillo L, Yu YM, Ajami A, Young VR (1996) Arginine: new and exciting developments for an “old” amino-acid. Biomed Environ Sci 9: 296 - 315

    PubMed  CAS  Google Scholar 

  2. Kelly E, Morris SM Jr, Billiar TR (1995) Nitric oxide, sepsis, and arginine metabolism. J Parent Enteral Nutr 19: 234 - 238

    Article  CAS  Google Scholar 

  3. Szabo C, Thiemermann C (1994) Invited opinion: role of nitric oxide in hemorrhagic, traumatic, and anaphylactic shock and thermal injury. Shock 2: 145 - 155

    Article  PubMed  CAS  Google Scholar 

  4. Wiesinger H (2001) Arginine metabolism and the synthesis of nitric oxide in the nervous system. Prog Neurobiol 64: 365 - 391

    Article  PubMed  CAS  Google Scholar 

  5. Cifone MG, Cironi L, Meccia MA, et al (1995) Role of nitric oxide in cell-mediated tumor cytotoxicity. Adv Neuroimmunol 5: 443 - 461

    Article  PubMed  CAS  Google Scholar 

  6. Grover R, Lopez A, Lorente JA, et al (1998) Multi-center, randomized, placebo-controlled, double blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 27: A33 (abst)

    Google Scholar 

  7. Hattori Y, Kasai K, Gross SS (1999) Cationic amino acid transporter gene expression in cultured vascular smooth muscle cells and in rats. Am J Physiol 276: H2020 - 2028

    PubMed  CAS  Google Scholar 

  8. Freund H, Atamian S, Holroyde J, Fischer JE (1979) Plasma amino acids as predictors of the severity and outcome of sepsis. Ann Surg 190: 571 - 576

    Article  PubMed  CAS  Google Scholar 

  9. Hibbs JB Jr (1991) Synthesis of nitric oxide from L-arginine: a recently discovered pathway induced by cytokines with antitumour and antimicrobial activity. Res Immunol 142: 565 - 569

    Article  PubMed  CAS  Google Scholar 

  10. Johnson ML, Billiar TR (1998) Roles of nitric oxide in surgical infection and sepsis. World J Surg 22: 187 - 196

    Article  PubMed  CAS  Google Scholar 

  11. Wu G, Meininger CJ, Knabe DA, Bazer FW, Rhoads JM (2000) Arginine nutrition in development, health and disease. Curr Opin Clin Nutr Metab Care 3: 59 - 66

    Article  PubMed  CAS  Google Scholar 

  12. Quemener V, Moulinoux JPH, Bergeron C, et al (1992) Tumour inhibition by polyamine deprivation. In: Dowling RH, Fölsch UR, Löser C (eds) Polyamines in the Gastrointestinal Tract, 1St edn. Kluwer Academic Press, Lancaster, pp 375 - 385

    Google Scholar 

  13. Visek WJ (1985) Arginine and disease states. J Nutr 115: 532 - 541

    PubMed  CAS  Google Scholar 

  14. Visek WJ (1986) Arginine needs, physiological state and usual diets. A reevaluation. J Nutr 116: 36 - 46

    PubMed  CAS  Google Scholar 

  15. Hoogenraad N, Totino N, Elmer H, Wraight C, Alewood P, Johns RB (1985) Inhibition of intestinal citrulline synthesis causes severe growth retardation in rats. Am J Physiol 249: G792 - G799

    PubMed  CAS  Google Scholar 

  16. Barbul A (1986) Arginine: biochemistry, physiology, and therapeutic implications. J Parenter Enteral Nutr 10: 227 - 238

    Article  CAS  Google Scholar 

  17. Wakabayashi Y (1985) The glutamate crossway. In: Cynober L (ed) Amino acid metabolism and therapy in health and nutritional disease. CRC Press, Boca Raton, pp 89 - 98

    Google Scholar 

  18. Jenkinson CP, Grody WW, Cederbaum SD (1996) Comparative properties of arginases. Comp Biochem Physiol B Biochem Mol Biol 114: 107 - 132

    Article  PubMed  CAS  Google Scholar 

  19. Dhanakoti SN, Brosnan ME, Herzberg GR, Brosnan JT (1992) Cellular and subcellular localization of enzymes of arginine metabolism in rat kidney. Biochem J 282: 369 - 375

    PubMed  CAS  Google Scholar 

  20. Windmueller HG, Spaeth AE (1981) Source and fate of circulating citrulline. Am J Physiol 241: E473 - E480

    PubMed  CAS  Google Scholar 

  21. Morris SMJ (1992) Regulation of enzymes of urea and arginine synthesis. Annu Rev Nutr 12: 81 - 101

    Article  PubMed  CAS  Google Scholar 

  22. Dhanakoti SN, Brosnan JT, Herzberg GR, Brosnan ME (1990) Renal arginine synthesis: studies in vitro and in vivo. Am J Physiol 259: E437 - E442

    PubMed  CAS  Google Scholar 

  23. Castillo L, Ajami A, Branch S, et al (1994) Plasma arginine kinetics in adult man: response to an arginine-free diet. Metabolism 43: 114 - 122

    Article  PubMed  CAS  Google Scholar 

  24. Bruins MJ, Lamers WH, Soeters PB, Meijer AJ, Deutz NEP (2002) In vivo measurement of nitric oxide production porcine gut, liver and muscle during hyperdynamic endotoxemia. Br J Pharmacol 137: 1225 - 1236

    Article  PubMed  CAS  Google Scholar 

  25. Castillo L, Chapman TE, Sanchez M, et al (1993) Plasma arginine and citrulline kinetics in adults given adequate and arginine-free diets. Proc Natl Acad Sci USA 90: 7749 - 7753

    Article  PubMed  CAS  Google Scholar 

  26. Rabier D, Narcy C, Bardet J, Parvy P, Saudubray JM, Kamoun P (1991) Arginine remains an essential amino acid after liver transplantation in urea cycle enzyme deficiencies. J Inherit Metab Dis 14: 277 - 280

    Article  PubMed  CAS  Google Scholar 

  27. Bruins MJ, Soeters PB, Deutz NE (2000) Endotoxemia affects organ protein metabolism differently during prolonged feeding in pigs. J Nutr 130: 3003 - 3013

    PubMed  CAS  Google Scholar 

  28. Gore DC, Jahoor F, Hibbert J, DeMaria EJ (1995) Except for alanine, muscle protein catabolism is not influenced by alterations in glucose metabolism during sepsis. Arch Surg 130: 1171 - 1176

    Article  PubMed  CAS  Google Scholar 

  29. Mori M, Gotoh T, Nagasaki A, Takiguchi M, Sonoki T (1998) Regulation of the urea cycle enzyme genes in nitric oxide synthesis. J Inherit Metab Dis 21: 59 - 71

    Article  PubMed  CAS  Google Scholar 

  30. Wang WW, Jenkinson CP, Griscavage JM, et al (1995) Co-induction of arginase and nitric oxide synthase in murine macrophages activated by lipopolysaccharide. Biochem Biophys Res Commun 210: 1009 - 1016

    Article  PubMed  CAS  Google Scholar 

  31. Chu SW, Nesheim MC (1979) The relationship of plasma arginine and kidney arginase activity to arginine degradation in chickens. J Nutr 109: 1752 - 1758

    PubMed  CAS  Google Scholar 

  32. Gotoh T, Araki M, Mori M (1997) Chromosomal localisation of the human arginase II gene and tissue distribution of its mRNA. Biochem Biophys Res Commun 233: 487 - 491

    Article  PubMed  CAS  Google Scholar 

  33. Lortie MJ, Ishizuka S, Schwartz D, Blantz RC (2000) Bioactive products of arginine in sepsis: tissue and plasma composition after LPS and iNOS blockade. Am J Physiol 278: C11911199

    Google Scholar 

  34. Desmukh DR, Ghole VS, Marescau B, De Deyn PP (1997) Effect of endotoxemia on plasma and tissue levels of nitric oxide metabolites and guanidino compounds. Arch Physiol Biochem 105: 32 - 37

    Article  Google Scholar 

  35. Roland CR, Nakafusa Y, Flye MW (1999) Gadolinium chloride inhibits lipopolysaccharideinduced mortality and in vivo prostaglandin E2 release by splenic macrophages. J Gastrointest Surg; 3: 301 - 307

    Article  PubMed  CAS  Google Scholar 

  36. Freund H, Atamian S, Holroyde J, Fischer JE (1979) Plasma amino acids as predictors of the severity and outcome of sepsis. Ann Surg 190: 571 - 576

    Article  PubMed  CAS  Google Scholar 

  37. Hecker M, Sessa WC, Harris HJ, Anggard EE, Vane JR (1990) The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine. Proc Natl Acad Sci USA 87: 86128616

    Google Scholar 

  38. Morin MJ, Unno N, Hodin RA, Fink MP (1998) Differential expression of inducible nitric oxide synthase messenger RNA along the longitudinal and crypt-villus axes of the intestine in endotoxemic rats. Crit Care Med 26: 1258 - 1264

    Article  PubMed  CAS  Google Scholar 

  39. Chen K, Inoue M, Okada A (1996) Expression of inducible nitric oxide synthase mRNA in rat digestive tissues after endotoxin and its role in intestinal mucosal injury. Biochem Biophys Res Commun 224: 703 - 708

    Article  PubMed  CAS  Google Scholar 

  40. Tabuchi S, Gotoh T, Miyanaka K, Tornita K, Mori M (2000) Regulation of genes for inducible nitric oxide synthase and urea cycle enzymes in rat liver in endotoxin shock. Biochem Biophys Res Commun 268: 221 - 224

    Article  PubMed  CAS  Google Scholar 

  41. Kirkeboen KA, Strand OA (1999) The role of nitric oxide in sepsis - an overview. Acta Anaesthesiol Scand 43: 275 - 288

    Article  PubMed  CAS  Google Scholar 

  42. Kreimeier U, Brueckner UB, Gerspach S, Veitinger K, Messmer K (1993) A porcine model of hyperdynamic endotoxemia: pattern of respiratory, macrocirculatory, and regional blood flow changes. J Invest Surg 6: 143 - 156

    Article  PubMed  CAS  Google Scholar 

  43. Green SJ, Nacy CA (1993) Antimicrobial and immunopathologic effects of cytokine-induced nitric oxide synthesis. Curr Opin Infect Dis 6: 384 - 396

    Google Scholar 

  44. van der Veen RC (2001) Nitric oxide and T helper cell immunity. Int Immunopharmacol 1: 11491 - 11500

    Google Scholar 

  45. Crawford RM, Leiby DA, Green SJ, Nacy CA, Fortier AH, Meltzer MS (1994) Macrophage activation: a riddle of immunological resistance. Immunol Ser 60: 29 - 46

    PubMed  CAS  Google Scholar 

  46. Bastian NR, Hibbs JB Jr (1994) Assembly and regulation of NADPH oxidase and nitric oxide synthase. Curr Opin Immunol 6: 131 - 139

    Article  PubMed  CAS  Google Scholar 

  47. Hibbs JB Jr, Westenfelder C, Taintor R, et al (1992) Evidence for cytokine-inducible nitric oxide synthesis from L-arginine in patients receiving interleukin-2 therapy. J Clin Invest 89: 867 - 877

    Article  PubMed  Google Scholar 

  48. Chyun JH, Griminger P (1984) Improvement of nitrogen retention by arginine and glycine supplementation and its relation to collagen synthesis in traumatized mature and aged rats. J Nutr 114: 1697 - 1704

    PubMed  CAS  Google Scholar 

  49. Cui XL, Iwasa Y, Omori A, et al (1999) Effects of dietary arginine supplementation on protein turnover and tissue protein synthesis in scald-burn rats. Nutrition 15: 563 - 569

    Article  PubMed  CAS  Google Scholar 

  50. Pui YM, Fisher H (1979) Factorial supplementation with arginine and glycine on nitrogen retention and body weight gain in the traumatized rat. J Nutr 109: 240 - 246

    PubMed  CAS  Google Scholar 

  51. Barbul A, Wasserkrug HL, Yoshimura N, Tao R, Efron G (1984) High arginine levels in intravenous hyperalimentation abrogate post-traumatic immune suppression. J Surg Res 36: 620 - 624

    Article  PubMed  CAS  Google Scholar 

  52. Cerra FB, Lehmann S, Konstantinides N, et al (1991) Improvement of immune function in ICU patients by enteral nutrition supplemented with arginine, RNA and menhaden oil is independent of nitrogen balance. Nutrition 7: 193-219

    Google Scholar 

  53. Gonce SJ, Peck MD, Alexander JW, Miskell PW (1990) Arginine supplementation and its effect on established peritonitis in guinea pigs. J Parenteral Enteral Nutr 14: 237 - 244

    Article  CAS  Google Scholar 

  54. Daly JM, Lieberman MD, Goldfine J, Shou J, et al (1992) Enteral nutrition with supplemental arginine, RNA, and omega-3 fatty acids in patients after operation: immunologic, metabolic, and clinical outcome. Surgery 112: 56 - 67

    PubMed  CAS  Google Scholar 

  55. Bruins MJ, Soeters PB, Lamers WH, Deutz NE (2002) L-arginine supplementation in pigs decreases liver protein turnover and increases hindquarter protein turnover both during and after endotoxemia. Am J Clin Nutr 75: 1031 - 1044

    PubMed  CAS  Google Scholar 

  56. Frederick JA, Hasselgren PO, Davis S, Higashiguchi T, Jacob TD, Fischer JE (1993) Nitric oxide upregulate in vivo hepatic protein synthesis during endotoxemia. Arch Surg 128: 152156

    Google Scholar 

  57. Muramatsu T, Kato M, Tasaki I, Okumura J (1986) Enhanced whole-body protein synthesis by methionine and arginine supplementation in the protein-starved chicks. Br J Nutr 55: 635 - 641

    Article  PubMed  CAS  Google Scholar 

  58. Schramm L, La M, Heidbreder E, et al (2002) L-arginine deficiency and supplementation in experimental acute renal failure and human kidney transplantation. Kidney 61: 14231432

    Google Scholar 

  59. Nelin LD, Hoffman GM (2001) L-arginine infusion lowers blood pressure in children. J Pediatr 139: 747 - 749

    Article  PubMed  CAS  Google Scholar 

  60. Soeters PB, Hallemeesch MM, Bruins MJ, van Eijk HM, Deutz NE (2002) Quantitative in vivo assessment of arginine utilization and nitric oxide production in endotoxemia. Am J Surg 183: 480 - 488

    Article  PubMed  CAS  Google Scholar 

  61. Bruins MJ, Soeters PB, Lamers WH, Meijer AJ, Deutz NE (2002) L-arginine supplementation in hyperdynamic endotoxemic pigs: effect on nitric oxide synthesis by the different organs. Crit Care Med 30: 508 - 517

    Article  PubMed  CAS  Google Scholar 

  62. Dahm PL, Thorne J, Myhre E, Grins E, Martensson L, Blomquist S (1999) Intestinal and hepatic perfusion and metabolism in hypodynamic endotoxic shock. Effects of nitric oxide synthase inhibition. Acta Anaesthesiol Scan 43: 56-63

    Google Scholar 

  63. Cohen RI, Hassell AM, Marzouk K, Marini C, Liu SF, Scharf SM (2001) Renal effects of nitric oxide in endotoxemia. Am J Respir Crit Care Med 15: 1890 - 1895

    Article  Google Scholar 

  64. Nishida J, McCuskey RS, McDonnell D, Fox ES (1994) Protective role of NO in hepatic microcirculatory dysfunction during endotoxemia. Am J Physiol 267: G1135 - 1141

    PubMed  CAS  Google Scholar 

  65. Saetre T, Gundersen Y, Smiseth OA, et al (1998) Hepatic oxygen metabolism in porcine endotoxemia: the effect of nitric oxide synthase inhibition. Am J Physiol 275: G1377 - 1385

    PubMed  CAS  Google Scholar 

  66. Buwalda M, Ince C (2002) Opening the microcirculation: can vasodilators be useful in sepsis? Intensive Care Med 28: 1208 - 1217

    Article  PubMed  Google Scholar 

  67. Lorente JA, Landin L, Renes R, et al (1993) Role of nitric oxide in the hemodynamic changes of sepsis. Crit Care Med 21: 759 - 767

    Article  PubMed  CAS  Google Scholar 

  68. Schleiffer R, Raul F (1996) Prophylactic administration of L-arginine improves the intestinal barrier function after mesenteric ischaemia. Gut 39: 194 - 198

    Article  PubMed  CAS  Google Scholar 

  69. Warnecke HB, Schirmeier A, Nussler AK, et al (2002) The combined treatment with L-arginine and methylprednisolone improves graft morphology and mucosal barrier function. Transplant Proc 34: 996 - 998

    Article  PubMed  CAS  Google Scholar 

  70. Kubes P (1993) Ischemia-reperfusion in feline small intestine: a role for nitric oxide. Am J Physiol 264: G143 - 149

    PubMed  CAS  Google Scholar 

  71. Welters CF, Dejong CH, Deutz NE, Heineman E (1999) Effects of parenteral arginine supplementation on the intestinal adaptive response after massive small bowel resection in the rat. J Surg Res 85: 259 - 266

    Article  PubMed  CAS  Google Scholar 

  72. Carrier M, Pellerin M, Perrault LP, et al (2002) Cardioplegic arrest with L-arginine improves myocardial protection: results of a prospective randomized clinical trial. Ann Thor-ac Surg 73: 837 - 841

    Article  Google Scholar 

  73. Szabo G, Bährle S, Batkai S, et al (1998) L-arginine: effect on reperfusion injury after heart transplantation. World J Surg 22: 791 - 798

    Article  PubMed  CAS  Google Scholar 

  74. Vinten-Johansen J, Zhao ZQ, Nakamura M, et al (1999) Nitric oxide and the vascular endothelium in myocardial ischemia-reperfusion injury. Ann NY Acad Sci 874: 354 - 370

    Article  PubMed  CAS  Google Scholar 

  75. Hobbs AJ, Higgs A, Moncada S (1999) Inhibition of nitric oxide synthase as a potential therapeutic target. Annu Rev Pharmacol Toxicol 39: 191 - 220

    Article  PubMed  CAS  Google Scholar 

  76. Barbul A, Returra G, Levenson S (1977) Arginine: thymotropic and wound healing promoting agent. Surg Forum 28: 101 - 103

    PubMed  CAS  Google Scholar 

  77. Leon P, Redmond HP, Stein TP, et al (1991) Arginine supplementation improves histone and acute-phase protein synthesis during gram-negative sepsis in the rat. J Parenter Enteral Nutr 15: 503 - 508

    Google Scholar 

  78. Tepaske R, Velthuis H, Oudemans-van Straaten HM, et al (2001) Effect of preoperative oral immune-enhancing nutritional supplement on patients at high risk of infection after cardiac surgery: a randomised placebo-controlled trial. Lancet 358: 696 - 701

    Article  PubMed  CAS  Google Scholar 

  79. Carrier M, Pellerin M, Perrault LP, et al (2002) Cardioplegic arrest with L-arginine improves myocardial protection: results of a prospective randomized clinical trial. Ann Thor-ac Surg 73: 837 - 842

    Article  Google Scholar 

  80. Heyland DK, Novak F, Drover JW, Jain M, Su X, Suchner U (2001) Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA 286: 944 - 953

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Poeze, M., Bruins, M.J. (2003). Supplementing Arginine during Sepsis: from Theory to Clinical Practice. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5548-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5548-0_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5550-3

  • Online ISBN: 978-1-4757-5548-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics