Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 25))

  • 647 Accesses

Abstract

Consider the integral1

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa % aaleaacaWGtbaabeaakiaacIcacaWG4bGaaiykaiabg2da9maalaaa % baGaaGymaaqaaiaadohacaGGHaaaamaapedabaWaaSaaaeaacaWG1b % WaaWbaaSqabeaacaWGZbaaaOGaamizaiaadwhaaeaacaWGLbWaaWba % aSqabeaacaWG1bGaey4kaSIaamiwaaaakiabgkHiTiaaigdaaaGaai % ilaaWcbaGaaGimaaqaaiabg6HiLcqdcqGHRiI8aaaa!4C2F!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${B_S}(x) = \frac{1}{{s!}}\int_0^\infty {\frac{{{u^s}du}}{{{e^{u + X}} - 1}},} $$
(1)

and suppose that we require an expansion for small values of the parameter x. When x = 0, the integral is simply a zeta function. If we attempt to find an expansion for small x by expanding the integrand in powers of x directly, the expansion will ultimately break down. To see this explicitly, suppose for simplicity that 0 < s < 1. We have then

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa % aaleaacaWGtbaabeaakiaacIcacaWG4bGaaiykaiabg2da9maalaaa % baGaaGymaaqaaiaadohacaGGHaaaaiaacUhadaWdXaqaamaalaaaba % GaamyDamaaCaaaleqabaGaam4CaaaakiaadsgacaWG1baabaGaamyz % amaaCaaaleqabaGaamyDaaaakiabgkHiTiaaigdaaaGaey4kaSYaa8 % qmaeaacaWG1bWaaWbaaSqabeaacaWGZbaaaOGaamizaiaadwhaaSqa % aiaaicdaaeaacqGHEisPa0Gaey4kIipaaSqaaiaaicdaaeaacqGHEi % sPa0Gaey4kIipakiaacUfadaWcaaqaaiaaigdaaeaacaWGLbWaaWba % aSqabeaacaWG1bGaey4kaSIaamiwaaaakiabgkHiTiaaigdaaaGaey % OeI0YaaSaaaeaacaaIXaaabaGaamyzamaaCaaaleqabaGaamyDaaaa % kiabgkHiTiaaigdaaaGaaiyxaiaac2hacqGH9aqpcqaHcpGvcaGGOa % Gaam4uaiabgUcaRiaaigdacaGGPaGaeyOeI0IaamiEamaapedabaWa % aSaaaeaacaWG1bWaaWbaaSqabeaacaWGZbaaaOGaamizaiaadwhaae % aacaGGOaGaamyzamaaCaaaleqabaGaamyDaaaakiabgkHiTiaaigda % caGGPaWaaWbaaSqabeaacaaIYaaaaaaaaeaacaaIWaaabaGaeyOhIu % kaniabgUIiYdGccqGHRaWkcaWGpbGaaiikaiaadIhadaahaaWcbeqa % aiaaikdaaaGccaGGPaGaaiOlaaaa!7F1C!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${B_S}(x) = \frac{1}{{s!}}\{ \int_0^\infty {\frac{{{u^s}du}}{{{e^u} - 1}} + \int_0^\infty {{u^s}du} } [\frac{1}{{{e^{u + X}} - 1}} - \frac{1}{{{e^u} - 1}}]\} = \varsigma (S + 1) - x\int_0^\infty {\frac{{{u^s}du}}{{{{({e^u} - 1)}^2}}}} + O({x^2}).$$
(2)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Footnotes

  1. T. J. Buckholtz, and H. E. DeWitt, J. Math. Phys. (1970), 11, 477.

    Google Scholar 

  2. B. Davies and R. G. Storer, Phys. Rev. (1968), 171, 150.

    Google Scholar 

  3. These results were obtained by H. C. Levey and J. J. Mahoney, Q. Appl. Math. (1967), 26, 101, by a direct analysis. It is interesting to compare the two methods of derivation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davies, B. (1978). Integrals Involving a Parameter. In: Integral Transforms and Their Applications. Applied Mathematical Sciences, vol 25. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5512-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5512-1_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-90313-2

  • Online ISBN: 978-1-4757-5512-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics