Immunomodulation and Chlamydia: Immunosuppression and the Protective Immune Response to C. Psittaci in Mice

  • Gerald I. Byrne
  • Lynne E. Guagliardi
  • Robin E. Huebner
  • Donna M. Paulnock
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 239)


The main point of this presentation will be to describe the immunosuppressive events that accompany acquired protective immunity to Chlamydia psittaci in the mouse. As a prelude to the presentation and discussion of the experimental data, it is important to understand some aspects of the biology of chlamydiae, the diseases that these organisms cause and what is already known concerning immune responses to chlamydiae.


Protective Immunity Mononuclear Phagocyte Chlamydial Infection Elementary Body Lepromatous Leprosy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.W. Moulder, A model for studying the biology of parasitism, Chlamydia psittaci and mouse fibroblasts (L cells), BioScience 58: 875 (1969).Google Scholar
  2. 2.
    P. Saikku, S.-P. Wang, M. Kleemola, E. Brander, E. Rusaneu, and J.T. Grayston, An epidemic of mild pneumonia to an unusual strain of Chlamydia psittaci, J. Infect. Dis. 151:832 (1985).Google Scholar
  3. 3.
    J.T. Grayston, C.-C. Kuo, S.-P. Wang, and J. Altman., A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory tract infections, N. Engl. J. Med. 315:161 (1986).Google Scholar
  4. 4.
    J. Schachter, and H.D. Caldwell, Chlamydiae, Ann. Rev. Microbiol. 34:285 (1980).Google Scholar
  5. 5.
    P.-A. Mardh, K.K. Holmes, J.D. Oriel, P. Piot, and J. Schachter (ed.), “Chlamydial Infections,” Proceedings of the 5th International Symposium on Human Chlamydial Infections, Elsevier Biomedical Press, New York (1982).Google Scholar
  6. 6.
    S. Darouger (ed.), Chlamydial Disease, in: “British Medical Bulletin,” Churchill Livingstone Inc., New York (1983).Google Scholar
  7. 7.
    J.W. Moulder, Looking at Chlamydiae without looking at their hosts, ASM News 50: 353 (1984).Google Scholar
  8. 8.
    S. Ladany, and I. Sarov, Recent advances in Chlamydia trachomatis, Eur. J. Epidemiol. 1:235 (1985).Google Scholar
  9. 9.
    D. Oriel, G. Ridgway, J. Schachter, D. Taylor-Robinson, and M. Ward (ed.), “Chlamydial infections,” Proceedings of the 6th International Symposium on Human Chlamydial Infections, Cambridge University Press, New York (1986).Google Scholar
  10. 10.
    P. Reeve, (ed.), “Chlamydial Infections,” Springer-Verlag, Heidelberg (1987).Google Scholar
  11. 11.
    J. Schachter, Immunity, in: “Chlamydial Infections,” P. Reeve (ed.), Springer-Verlag, Heidelburg (1987).Google Scholar
  12. 12.
    R.C. Brunham, I. MacLean, J. McDowell, R. Peeling, K. Persson, and S. Osser, Chlamydia trachomatis antigen specific serum antibodies among women who did and did not develop acute salpingitis following therapeutic abortion, in: “Chlamydial Infections,” Oriel et. al. (ed.), Cambridge University Press, New York (1986).Google Scholar
  13. 13.
    J.K. Lammert, and P.B. Wyrick, Modulation of the host immune response as a result of Chlamydia psittaci infection, Infect. Immun. 35:537 (1982).Google Scholar
  14. 14.
    D.L. Thiele, M. Kurosaka, and P.E. Lipsky, Phenotype of the accessory cell necessary for mitogen-stimulated T and B cell responses in human peripheral blood: delineation by its sensitivity to the lysosomotropic agent L-Leucine methyl ester, J. Immunol. 131:2282 (1983).Google Scholar
  15. 15.
    D.L. Thiele, P.E. Lipsky, The immunosuppressive activity of L-Leucyl-L-Leucine methyl ester: selective ablation of cytotoxin lymphocytes and monocytes, J Immunol. 136: 1038 (1986).Google Scholar
  16. 16.
    G.I. Byrne, and C.L. Faubion, Lymphokine-mediated microbistatic mechanisms restrict Chlamydia psittaci growth in macrophages, J Immunol. 128: 469–474.Google Scholar
  17. 17.
    G.I. Byrne, and D.A. Krueger, Lymphokine-mediated inhibition of Chlamydia replication in mouse fibroblasts is neutralized by anti-gamma interferon immunoglobulin, Infect. Immun. 42:1152 (1983).Google Scholar
  18. 18.
    I.J. Selikoff, A.S. Teirstein, and S.Z. Hirschman (ed.), “Acquired Immune Deficiency Syndrome,” Ann. NY Acad. Sci. 437 (1984).Google Scholar
  19. 19.
    C.G. Orosz, N.E. Zinn, R.G. Olsen, and L.E. Mathes, Retrovirus mediated immunosuppression II. Felv-uv alters in vitro murine T lymphocyte behavior by reversibly impairing lymphokine secretion, J. Immunol. 135:583 (1985).Google Scholar
  20. 20.
    H. Kirchner, H.T. Holden, and R.B. Herberman, Splenic suppressor macrophages induced in mice by injection of Corynebacterium parvum, J Immunol. 120:1709 (1978).Google Scholar
  21. 21.
    W.E. Bullock, E.M. Carlson, and R.K. Gershon, The evolution of immunosuppressive cell populations in experimental mycobacterial infection, J. Immunol. 120:1709 (1978).Google Scholar
  22. 22.
    F.M. Collins, and S.R. Watson, Suppressor T cells in BCG-infected mice, Infect. Immun. 25:491–496 (1979).Google Scholar
  23. 23.
    T.R. Jerrells, Immunosuppression associated with the development of chronic infections with Rickettsia tsutsugamushi adherent suppressor cell activity and macrophage activation, Infect. Immun. 50:175 (1985).Google Scholar
  24. 24.
    R.L. Modlin, V. Mehrs, L. Wong, Y. Fugimiya, W.-C. Chang, D.A. Horwitz, B.R. Bloom, T.H. Rea, and P.K. Pattengale, Suppressor T lymphocyte from lepromatous leprosy skin lesions, J. Ininunol. 137:2831 (1986).Google Scholar
  25. 25.
    R. Turcotte, D. LeGault, Mechanisms underlying the depressed production of interleukin-2 in spleen and lymph node cell cultures of mice infected with Mycobacterium bovin BCG, Infect. Immun. 51:826 (1986).Google Scholar
  26. 26.
    S.R. Wellhausen, and J.M. Mansfield, Characteristics of the splenic suppressor cell-target cell interactions in experimental African trypanosomiasis, Cell Immunol. 54: 414 (1980).Google Scholar
  27. 27.
    E.A. Peterson, F.A. Neva, C.N. Oster, and H.B. Diaz, Specific inhibition of lymphocytes-proliferation responses by adherent suppressor cells in diffuse cutaneous leishmaniosis, N. Engl. J. Med. 306:387 (1982).Google Scholar
  28. 28.
    A.D. Nickol, and P.F. Bonventre, Visceral leishmaniosis in congenic mice of susceptible and resistant phenotypes: T-lymphocyte-mediated immunosuppression, Infect. Immun. 50:169 (1985).Google Scholar
  29. 29.
    C.W. Todd, R.W. Goodgame, and D.G. Colley, Immune responses during human schistosomiosis mansoni. V. Suppression of schistosome antigen-specific lymphocyte blastogenesis by adherent/phagocyte cells, J. Immunol. 122:1440 (1979).Google Scholar
  30. 30.
    A. Haregewoin, T. Godal, A.S. Mustafa, A. Belehu, and T. Yemaneberhan, T-cell conditioned media reverse T-cell unresponsiveness in lepromatous leprosy, Nature 303: 342 (1983).Google Scholar
  31. 31.
    U. Persson, Lipopolysaccharide-induced suppression of the primary immune response to a thymus-dependent antigen, J. Immunol. 118: 789 (1977).PubMedGoogle Scholar
  32. 32.
    P.S. Holt, and M.L. Misfeldt, Alteration of murine immune response by Pseudomonas aeruqinosa exotoxin A, Infect. Immun. 45:227 (1984).Google Scholar
  33. 33.
    V. Mehra, P.J. Brennan, E. Rada, J. Convit, and B.R. Bloom, Lymphocyte suppression in leprosy induced by unique M. leprae glycolipid, Nature 308: 194 (1984).Google Scholar
  34. 34.
    J.D. Stobo, Immunosuppression in man: suppression by macrophages can be mediated by interactions with regulatory T cells, J. Immunol. 119:918 (1977).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Gerald I. Byrne
    • 1
  • Lynne E. Guagliardi
    • 1
  • Robin E. Huebner
    • 1
  • Donna M. Paulnock
    • 1
  1. 1.Department of Medical MicrobiologyUniversity of Wisconsin Medical SchoolMadisonUSA

Personalised recommendations