Skip to main content

Mechanisms of Immunological Unresponsiveness in the Spectra of Leprosy and Leishmaniasis

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 239))

Abstract

Leprosy and cutaneous leishmaniasis share a number of important characteristics1,2. They are both chronic granulomatous diseases; both affect the skin and both present a spectrum of clinical manifestations. In the case of leprosy, there is a remarkable correlation between the clinical and histopathological spectrum, and cell-mediated immune responsiveness to antigens of M. leprae. At the tuberculoid pole, patients have few lesions which contain rare organisms and are able to mount strong T-cell-mediated immune responses to M. leprae antigens in vitro and in vivo. In contrast, at the lepromatous end of the spectrum, patients have disseminated skin lesions containing large numbers of acid-fast bacilli and are selectively unresponsive to antigens of M. leprae. In American cutaneous leishmaniasis, the spectrum is somewhat less well defined, more variable clinically and less predictable at the histopathologic level. The disease ranges from a single defined lesion containing few amastigotes in localized cutaneous leishmaniasis (LCL) to diffuse cutaneous leishmaniasis (DCL) which, like lepromatous leprosy, is characterized by disseminated granulomata containing macrophages laden with amastigotes and immune unresponsiveness to leishmanial antigens. There are other clinical forms of cutaneous leishmaniasis including the highly destructive mucocutaneous (espundia) form, and a verrucous form, the pathogenesis of which are not entirely predictable from histopathology and molecular immunological data. In addition, in different parts of the world systemic forms of visceral leishmaniasis (kala-azar) occur in Asia, and a mild local form, Oriental Sore, exists in the Middle East primarily. Antibody levels appear to be elevated in both lepromatous leprosy and in diffuse cutaneous leishmaniasis, indicating that antibodies are unlikely to play a major role in protection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Convit, Leprosy and leishmaniasis. Similar clinical-immunological- pathological models. Ethiop. Med. J. 12: 187–195 (1974).

    CAS  PubMed  Google Scholar 

  2. D.P. Humber, ed., Immunological Aspects of Leprosy, Tuberculosis and Leishmaniasis. Excerpta Med. Intl. Cong. Ser. 574, pp. 312, (1981).

    Google Scholar 

  3. B.R. Bloom, and V. Mehra, Immunological unresponsiveness in leprosy. Immunol. Rev. 80: 5–28 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. V. Mehra, L.H. Mason, J.P. Fields and B.R. Bloom, Lepromin-induced suppressor cells in patients with leprosy, J. Immunol. 123: 1813–1817 (1979).

    CAS  PubMed  Google Scholar 

  5. I. Nath, J.J. Van Rood, N.K. Mehra and M.C. Vaidya, Natural suppressor cells in human leprosy: the role of HLA-D-identical peripheral lymphocytes and macrophages in the in vitro modulation of lymphoproliferative responses. Clin. Exp. Immunol. 42: 203–210 (1980).

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Salgame, P.R., P.R. Mahadevan and N.H. Antia, Mechanism of immunosuppression in leprosy: presence of suppressor factor(s) from macrophages of lepromatous patients, Infect. Immun. 40: 1119–1126 (1983).

    CAS  Google Scholar 

  7. I. Nath, J. Jayaraman, M. Sathish, L.K. Bhutani and A.K. Sharma, Inhibition of interleukin-2 production by adherent cell factors from lepromatous leprosy patients. Clin. Exp. Immunol. 58: 531–538 (1984).

    CAS  PubMed Central  PubMed  Google Scholar 

  8. V. Mehra, L.H. Mason, W. Rothman, E. Reinherz, S.F. Schlossman and B.R. Bloom, Delineation of a human T cell subset responsible for lepromin-induced suppression in leprosy patients, J. Immunol., 125: 1183–1188 (1980).

    CAS  PubMed  Google Scholar 

  9. V. Mehra, J. Convit, A. Rubinstein and B.R. Bloom, Activated suppressor T cells in leprosy, J. Immunol. 129: 1946–1951 (1982).

    CAS  PubMed  Google Scholar 

  10. R.L. Modlin, V. Mehra, L. Wong, Y. Fujimiya, W-C. Chang, D.A. Horwitz, B.R. Bloom, T.H. Rea and P.K. Pattengale, Suppressor T lymphocytes from lepromatous leprosy skin lesions, J. Immunol. 137: 2831–2834 (1986).

    CAS  PubMed  Google Scholar 

  11. M. Castes, A. Agnelli, O. Verde and A.J. Rondon, Characterization of the cellular immune response in American cutaneous leishmaniasis, Clin. Immunol. Immunopathol. 27: 176–186 (1983).

    Article  CAS  Google Scholar 

  12. M. Castes, A. Agnelli and A.J. Rondon, Mechanisms associated with immunoregulation in human American cutaneous leishmaniasis. Clin. Exp. Immunol. 57: 279–286 (1984).

    CAS  PubMed Central  PubMed  Google Scholar 

  13. S.W. Hunter, and P.J. Brennan, A novel phenolic glycolipid from Mycobacterium leprae possibly involved in immunogenecity and pathogenicity, J. Bacteriol. 147: 728–735 (1984).

    Google Scholar 

  14. S.W. Hunter, T. Fujiwara and P.J. Brennan, Structure and antigenicity of the major specific glycolipid antigen of Mycobacterium leprae, J. Biol. Chem. 257: 15072–15078 (1981).

    Google Scholar 

  15. V. Mehra, P.J. Brennan, E. Rada, J. Convit and B.R. Bloom, Lymphocyte suppression in leprosy induced by unique M. leprae glycolipid, Nature 308: 194–196 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. P.J. Baker, Homeostatic control of antibody responses: a model based on the recognition of cell-associated antibody by regulatory T cells, Transplant. Rev. 26: 3–20 (1975).

    CAS  Google Scholar 

  17. G.F. Mitchell, and E. Handman, The glycoconjugate derived from a Leishmania major receptor for macrophages is a suppressogenic, disease-promoting antigen in murine cutaneous leishmaniasis. Parasite. Immunol. 8: 255–263 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. W.C. van Voorhis, G. Kaplan, E.N. Sarno, M.A. Horwitz, R.M. Steinman, W.R. Levis, N. Nogueira, L.S. Hair, C.R. Gattass, B.A. Arrick, and Z.A. Cohn, The cutaneous infiltrates of leprosy: cellular characteristics and the predominant T-cell phenotypes. N. Engl. J. Med. 307: 1593–1597 (1982).

    Article  PubMed  Google Scholar 

  19. R.L. Modlin, F.M. Hofman, C.R. Taylor and T.H. Rea, T lymphocyte subsets in the skin lesions of patients with leprosy, J. Am. Acad. Dermatol. 8: 182–189 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. R.L. Modlin, F.M. Hofman, P.R. Meyer, O.P. Sharma, C.R. Taylor and T.H. Rea, In situ demonstration of T lymphocyte subsets in granulomatous inflammation: leprosy, rhinoscleroma and sarcoidosis. Clin. Exp. Immunol. 51:430–438 (1983).

    CAS  PubMed Central  PubMed  Google Scholar 

  21. R.L. Modlin, J.F. Gebhard, C.R. Taylor and T.H. Rea, In situ characterization of T lymphocyte subsets in the reactional states of leprosy, Clin. Exp. Immunol. 53: 17–24 (1983).

    CAS  Google Scholar 

  22. R.B. Narayanan, S. Laal, A.K. Sharma, L.K. Bhutani, and I. Nath. Differences in predominant T cell phenotypes and distribution pattern in reactional lesions of tuberculoid and lepromatous leprosy, Clin. Exp. Immunol., 55: 623–628 (1984).

    CAS  Google Scholar 

  23. J. Longley, A. Haregewoin, T. Yemaneberhan, T. van Diepen, T. Warndorff, J. Nsibami, D. Knowles, K.A. Smith and T. Godai, In vivo responses to Mycobacterium leprae: antigen presentation, interleukin-2 production, and immune cell phenotypes in naturally occurring leprosy lesions, Int. J. Lepr. 53: 385–394 (1985).

    CAS  Google Scholar 

  24. R.L. Modlin, F.J. Tapia, B.R. Bloom, M.E. Gallinoto, M. Castes, A.J. Rondon, T.H. Rea and J. Convit, In situ characterization of the cellular immune response in American cutaneous leishmaniasis. Clin. Exp. Immunol. 60:241–248 (1985).

    CAS  PubMed Central  PubMed  Google Scholar 

  25. R.L. Modlin, F.M. Hofman, D.A. Horwitz, L.A. Husmann, S. Gillis, C.R. Taylor and T.H. Rea, In situ identification of cells in human leprosy granulomas with monoclonal antibodies to interleukin 2 and its receptor, J. Immunol. 132: 3085–3090 (1984).

    CAS  PubMed  Google Scholar 

  26. W. Cammer, B.R. Bloom, W.T. Norton, and S. Gordon, Degradation of basic protein in myelin by proteases secreted by stimulated macrophages: A possible mechanism of inflammatory demyelination. Proc. Nat. Acad. Sci. 75: 1554–1558 (1978).

    Article  CAS  PubMed  Google Scholar 

  27. M. Kronenberg, J. Goverman, R. Haars, M. Malissen, E. Kraig, L. Phillips, T. Delovitch, N. Suciu Foca and L. Hood, Rearrangement and transcription of the beta-chain genes of the T-cell antigen receptor in different types of murine lymphocytes. Nature. 313: 647–653 (1985).

    Article  CAS  PubMed  Google Scholar 

  28. R.L. Modlin, H. Kato, V. Mehra, E.E. Nelson, X-d. Fan, T.H. Rea, P.K. Pattengale and B.R. Bloom, Genetically restricted suppressor T-cell clones derived from lepromatous leprosy lesions,. Nature. 322: 459–461 (1986).

    Article  CAS  PubMed  Google Scholar 

  29. T.H.M. Ottenhoff, D.G. Elferink, P.R. Klaster and R.R.P. de Vries, Cloned suppressor T cells from a lepromatous leprosy patient suppress Mycobacterium leprae reactive helper T cells, Nature. 322: 462–464 (1986).

    Article  CAS  PubMed  Google Scholar 

  30. J. Convit, M.E. Pinardi, G. Rodriguez Ochoa, M. Ulrich, J.L. Avila and M. Goihman, Elimination of Mycobacterium leprae subsequent to local in vivo activation of macrophages in lepromatous leprosy by other mycobacteria, Clin. Exp. Immunol. 17: 261–265 (1974).

    CAS  Google Scholar 

  31. J. Convit, N. Aranzazu, M. Pinardi and M. Ulrich, Immunological changes observed in indeterminate and lepromatous leprosy patients and Mitsuda-negative contacts after the inoculation of a mixture of Mycobacterium leprae and BCG, Clin. Exp. Immunol. 36: 214–220 (1979).

    CAS  Google Scholar 

  32. J. Convit, N. Aranzazu, M. Ulrich, M.E. Pinardi, O. Reyes and J. Alvarado, Immunotherapy with a mixture of Mycobacterium leprae and BCG in different forms of leprosy and in Mitsuda-negative contacts, Int. J. Lepr. 50: 415–424 (1982).

    CAS  Google Scholar 

  33. J. Convit, N. Aranzazu, M. Zuniga, M. Ulrich, M.E. Pinardi, Z. Castellazzi and J. Alvarado, Immunotherapy and immunoprophylaxis of leprosy, Lepr. Rev. 4760: 47–60 (1983).

    Google Scholar 

  34. P.E.M. Fine, J.M. Ponnighaus, N. Maine, J.A. Clarkson and L. Bliss. Lancet 2: 499–502, 1986.

    Article  CAS  PubMed  Google Scholar 

  35. H.D. Engers, M. Abe, B.R. Bloom, V. Mehra, W. Britton, T.M. Buchanan, S.K. Khanolkar, D.B. Young, O. Gloss, T. Gillis, M. Harboe, J. Ivanyi, A.H.J. Kolk, and C.C. Shepard, Workshop: Results of a World Health Organization-Sponsored Workshop on Monoclonal Antibodies to Mycobacterium leprae. Inf. and Immun. 48: 603–605 (1985).

    Google Scholar 

  36. R.A. Young, V. Mehra, D. Sweetser, T. Buchanan, J. Clark-Curtiss, R.W. Davis and B.R. Bloom, Genes for the major protein antigens of the leprosy parasite Mycobacterium leprae, Nature, 316: 450–452 (1985).

    Article  CAS  PubMed  Google Scholar 

  37. A.S. Mustafa, H.K. Gill, A. Nerland, W.J. Britton, V. Mehra, B.R. Bloom, R.A. Young, and T. Godal, Human T-cell clones recognize a major M. leprae protein antigen expressed in E. coli. Nature. 319: 63–66 (1986).

    Article  CAS  Google Scholar 

  38. A.S. Mustafa, H.K. Gill, A. Nerland, W.J. Britton, V. Mehra, B.R. Bloom, R.A. Young and T. Godai, Human T-cell clones recognize a major M. leprae protein antigen expressed in E. coli. Nature. 319: 63–66 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. T.H. Ottenhoff, P.R. Klatser, J. Ivanyi, D.G. Elferink, M.Y. Wit, and R.R. Vries, Mycobacterium leprae-specific protein antigens defined by cloned human helper T cells, Nature, 319: 66–68 (1986).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bloom, B.R. et al. (1988). Mechanisms of Immunological Unresponsiveness in the Spectra of Leprosy and Leishmaniasis. In: Eisenstein, T.K., Bullock, W.E., Hanna, N. (eds) Host Defenses and Immunomodulation to Intracellular Pathogens. Advances in Experimental Medicine and Biology, vol 239. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5421-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5421-6_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5423-0

  • Online ISBN: 978-1-4757-5421-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics