Mechanisms of Immunological Unresponsiveness in the Spectra of Leprosy and Leishmaniasis

  • Barry R. Bloom
  • Vijay Mehra
  • Johanne Melancon-Kaplan
  • Marianella Castes
  • Jacinto Convit
  • Patrick J. Brennan
  • Thomas H. Rea
  • Robert L. Modlin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 239)


Leprosy and cutaneous leishmaniasis share a number of important characteristics1,2. They are both chronic granulomatous diseases; both affect the skin and both present a spectrum of clinical manifestations. In the case of leprosy, there is a remarkable correlation between the clinical and histopathological spectrum, and cell-mediated immune responsiveness to antigens of M. leprae. At the tuberculoid pole, patients have few lesions which contain rare organisms and are able to mount strong T-cell-mediated immune responses to M. leprae antigens in vitro and in vivo. In contrast, at the lepromatous end of the spectrum, patients have disseminated skin lesions containing large numbers of acid-fast bacilli and are selectively unresponsive to antigens of M. leprae. In American cutaneous leishmaniasis, the spectrum is somewhat less well defined, more variable clinically and less predictable at the histopathologic level. The disease ranges from a single defined lesion containing few amastigotes in localized cutaneous leishmaniasis (LCL) to diffuse cutaneous leishmaniasis (DCL) which, like lepromatous leprosy, is characterized by disseminated granulomata containing macrophages laden with amastigotes and immune unresponsiveness to leishmanial antigens. There are other clinical forms of cutaneous leishmaniasis including the highly destructive mucocutaneous (espundia) form, and a verrucous form, the pathogenesis of which are not entirely predictable from histopathology and molecular immunological data. In addition, in different parts of the world systemic forms of visceral leishmaniasis (kala-azar) occur in Asia, and a mild local form, Oriental Sore, exists in the Middle East primarily. Antibody levels appear to be elevated in both lepromatous leprosy and in diffuse cutaneous leishmaniasis, indicating that antibodies are unlikely to play a major role in protection.


Visceral Leishmaniasis Chronic Granulomatous Disease Suppressor Cell Cutaneous Leishmaniasis Lepromatous Leprosy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Convit, Leprosy and leishmaniasis. Similar clinical-immunological- pathological models. Ethiop. Med. J. 12: 187–195 (1974).PubMedGoogle Scholar
  2. 2.
    D.P. Humber, ed., Immunological Aspects of Leprosy, Tuberculosis and Leishmaniasis. Excerpta Med. Intl. Cong. Ser. 574, pp. 312, (1981).Google Scholar
  3. 3.
    B.R. Bloom, and V. Mehra, Immunological unresponsiveness in leprosy. Immunol. Rev. 80: 5–28 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    V. Mehra, L.H. Mason, J.P. Fields and B.R. Bloom, Lepromin-induced suppressor cells in patients with leprosy, J. Immunol. 123: 1813–1817 (1979).PubMedGoogle Scholar
  5. 5.
    I. Nath, J.J. Van Rood, N.K. Mehra and M.C. Vaidya, Natural suppressor cells in human leprosy: the role of HLA-D-identical peripheral lymphocytes and macrophages in the in vitro modulation of lymphoproliferative responses. Clin. Exp. Immunol. 42: 203–210 (1980).PubMedCentralPubMedGoogle Scholar
  6. 6.
    Salgame, P.R., P.R. Mahadevan and N.H. Antia, Mechanism of immunosuppression in leprosy: presence of suppressor factor(s) from macrophages of lepromatous patients, Infect. Immun. 40: 1119–1126 (1983).Google Scholar
  7. 7.
    I. Nath, J. Jayaraman, M. Sathish, L.K. Bhutani and A.K. Sharma, Inhibition of interleukin-2 production by adherent cell factors from lepromatous leprosy patients. Clin. Exp. Immunol. 58: 531–538 (1984).PubMedCentralPubMedGoogle Scholar
  8. 8.
    V. Mehra, L.H. Mason, W. Rothman, E. Reinherz, S.F. Schlossman and B.R. Bloom, Delineation of a human T cell subset responsible for lepromin-induced suppression in leprosy patients, J. Immunol., 125: 1183–1188 (1980).PubMedGoogle Scholar
  9. 9.
    V. Mehra, J. Convit, A. Rubinstein and B.R. Bloom, Activated suppressor T cells in leprosy, J. Immunol. 129: 1946–1951 (1982).PubMedGoogle Scholar
  10. 10.
    R.L. Modlin, V. Mehra, L. Wong, Y. Fujimiya, W-C. Chang, D.A. Horwitz, B.R. Bloom, T.H. Rea and P.K. Pattengale, Suppressor T lymphocytes from lepromatous leprosy skin lesions, J. Immunol. 137: 2831–2834 (1986).PubMedGoogle Scholar
  11. 11.
    M. Castes, A. Agnelli, O. Verde and A.J. Rondon, Characterization of the cellular immune response in American cutaneous leishmaniasis, Clin. Immunol. Immunopathol. 27: 176–186 (1983).CrossRefGoogle Scholar
  12. 12.
    M. Castes, A. Agnelli and A.J. Rondon, Mechanisms associated with immunoregulation in human American cutaneous leishmaniasis. Clin. Exp. Immunol. 57: 279–286 (1984).PubMedCentralPubMedGoogle Scholar
  13. 13.
    S.W. Hunter, and P.J. Brennan, A novel phenolic glycolipid from Mycobacterium leprae possibly involved in immunogenecity and pathogenicity, J. Bacteriol. 147: 728–735 (1984).Google Scholar
  14. 14.
    S.W. Hunter, T. Fujiwara and P.J. Brennan, Structure and antigenicity of the major specific glycolipid antigen of Mycobacterium leprae, J. Biol. Chem. 257: 15072–15078 (1981).Google Scholar
  15. 15.
    V. Mehra, P.J. Brennan, E. Rada, J. Convit and B.R. Bloom, Lymphocyte suppression in leprosy induced by unique M. leprae glycolipid, Nature 308: 194–196 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    P.J. Baker, Homeostatic control of antibody responses: a model based on the recognition of cell-associated antibody by regulatory T cells, Transplant. Rev. 26: 3–20 (1975).Google Scholar
  17. 17.
    G.F. Mitchell, and E. Handman, The glycoconjugate derived from a Leishmania major receptor for macrophages is a suppressogenic, disease-promoting antigen in murine cutaneous leishmaniasis. Parasite. Immunol. 8: 255–263 (1986).PubMedCrossRefGoogle Scholar
  18. 18.
    W.C. van Voorhis, G. Kaplan, E.N. Sarno, M.A. Horwitz, R.M. Steinman, W.R. Levis, N. Nogueira, L.S. Hair, C.R. Gattass, B.A. Arrick, and Z.A. Cohn, The cutaneous infiltrates of leprosy: cellular characteristics and the predominant T-cell phenotypes. N. Engl. J. Med. 307: 1593–1597 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    R.L. Modlin, F.M. Hofman, C.R. Taylor and T.H. Rea, T lymphocyte subsets in the skin lesions of patients with leprosy, J. Am. Acad. Dermatol. 8: 182–189 (1983).PubMedCrossRefGoogle Scholar
  20. 20.
    R.L. Modlin, F.M. Hofman, P.R. Meyer, O.P. Sharma, C.R. Taylor and T.H. Rea, In situ demonstration of T lymphocyte subsets in granulomatous inflammation: leprosy, rhinoscleroma and sarcoidosis. Clin. Exp. Immunol. 51:430–438 (1983).PubMedCentralPubMedGoogle Scholar
  21. 21.
    R.L. Modlin, J.F. Gebhard, C.R. Taylor and T.H. Rea, In situ characterization of T lymphocyte subsets in the reactional states of leprosy, Clin. Exp. Immunol. 53: 17–24 (1983).Google Scholar
  22. 22.
    R.B. Narayanan, S. Laal, A.K. Sharma, L.K. Bhutani, and I. Nath. Differences in predominant T cell phenotypes and distribution pattern in reactional lesions of tuberculoid and lepromatous leprosy, Clin. Exp. Immunol., 55: 623–628 (1984).Google Scholar
  23. 23.
    J. Longley, A. Haregewoin, T. Yemaneberhan, T. van Diepen, T. Warndorff, J. Nsibami, D. Knowles, K.A. Smith and T. Godai, In vivo responses to Mycobacterium leprae: antigen presentation, interleukin-2 production, and immune cell phenotypes in naturally occurring leprosy lesions, Int. J. Lepr. 53: 385–394 (1985).Google Scholar
  24. 24.
    R.L. Modlin, F.J. Tapia, B.R. Bloom, M.E. Gallinoto, M. Castes, A.J. Rondon, T.H. Rea and J. Convit, In situ characterization of the cellular immune response in American cutaneous leishmaniasis. Clin. Exp. Immunol. 60:241–248 (1985).PubMedCentralPubMedGoogle Scholar
  25. 25.
    R.L. Modlin, F.M. Hofman, D.A. Horwitz, L.A. Husmann, S. Gillis, C.R. Taylor and T.H. Rea, In situ identification of cells in human leprosy granulomas with monoclonal antibodies to interleukin 2 and its receptor, J. Immunol. 132: 3085–3090 (1984).PubMedGoogle Scholar
  26. 26.
    W. Cammer, B.R. Bloom, W.T. Norton, and S. Gordon, Degradation of basic protein in myelin by proteases secreted by stimulated macrophages: A possible mechanism of inflammatory demyelination. Proc. Nat. Acad. Sci. 75: 1554–1558 (1978).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Kronenberg, J. Goverman, R. Haars, M. Malissen, E. Kraig, L. Phillips, T. Delovitch, N. Suciu Foca and L. Hood, Rearrangement and transcription of the beta-chain genes of the T-cell antigen receptor in different types of murine lymphocytes. Nature. 313: 647–653 (1985).PubMedCrossRefGoogle Scholar
  28. 28.
    R.L. Modlin, H. Kato, V. Mehra, E.E. Nelson, X-d. Fan, T.H. Rea, P.K. Pattengale and B.R. Bloom, Genetically restricted suppressor T-cell clones derived from lepromatous leprosy lesions,. Nature. 322: 459–461 (1986).PubMedCrossRefGoogle Scholar
  29. 29.
    T.H.M. Ottenhoff, D.G. Elferink, P.R. Klaster and R.R.P. de Vries, Cloned suppressor T cells from a lepromatous leprosy patient suppress Mycobacterium leprae reactive helper T cells, Nature. 322: 462–464 (1986).PubMedCrossRefGoogle Scholar
  30. 30.
    J. Convit, M.E. Pinardi, G. Rodriguez Ochoa, M. Ulrich, J.L. Avila and M. Goihman, Elimination of Mycobacterium leprae subsequent to local in vivo activation of macrophages in lepromatous leprosy by other mycobacteria, Clin. Exp. Immunol. 17: 261–265 (1974).Google Scholar
  31. 31.
    J. Convit, N. Aranzazu, M. Pinardi and M. Ulrich, Immunological changes observed in indeterminate and lepromatous leprosy patients and Mitsuda-negative contacts after the inoculation of a mixture of Mycobacterium leprae and BCG, Clin. Exp. Immunol. 36: 214–220 (1979).Google Scholar
  32. 32.
    J. Convit, N. Aranzazu, M. Ulrich, M.E. Pinardi, O. Reyes and J. Alvarado, Immunotherapy with a mixture of Mycobacterium leprae and BCG in different forms of leprosy and in Mitsuda-negative contacts, Int. J. Lepr. 50: 415–424 (1982).Google Scholar
  33. 33.
    J. Convit, N. Aranzazu, M. Zuniga, M. Ulrich, M.E. Pinardi, Z. Castellazzi and J. Alvarado, Immunotherapy and immunoprophylaxis of leprosy, Lepr. Rev. 4760: 47–60 (1983).Google Scholar
  34. 34.
    P.E.M. Fine, J.M. Ponnighaus, N. Maine, J.A. Clarkson and L. Bliss. Lancet 2: 499–502, 1986.PubMedCrossRefGoogle Scholar
  35. 35.
    H.D. Engers, M. Abe, B.R. Bloom, V. Mehra, W. Britton, T.M. Buchanan, S.K. Khanolkar, D.B. Young, O. Gloss, T. Gillis, M. Harboe, J. Ivanyi, A.H.J. Kolk, and C.C. Shepard, Workshop: Results of a World Health Organization-Sponsored Workshop on Monoclonal Antibodies to Mycobacterium leprae. Inf. and Immun. 48: 603–605 (1985).Google Scholar
  36. 36.
    R.A. Young, V. Mehra, D. Sweetser, T. Buchanan, J. Clark-Curtiss, R.W. Davis and B.R. Bloom, Genes for the major protein antigens of the leprosy parasite Mycobacterium leprae, Nature, 316: 450–452 (1985).PubMedCrossRefGoogle Scholar
  37. 37.
    A.S. Mustafa, H.K. Gill, A. Nerland, W.J. Britton, V. Mehra, B.R. Bloom, R.A. Young, and T. Godal, Human T-cell clones recognize a major M. leprae protein antigen expressed in E. coli. Nature. 319: 63–66 (1986).CrossRefGoogle Scholar
  38. 38.
    A.S. Mustafa, H.K. Gill, A. Nerland, W.J. Britton, V. Mehra, B.R. Bloom, R.A. Young and T. Godai, Human T-cell clones recognize a major M. leprae protein antigen expressed in E. coli. Nature. 319: 63–66 (1986).PubMedCrossRefGoogle Scholar
  39. 39.
    T.H. Ottenhoff, P.R. Klatser, J. Ivanyi, D.G. Elferink, M.Y. Wit, and R.R. Vries, Mycobacterium leprae-specific protein antigens defined by cloned human helper T cells, Nature, 319: 66–68 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Barry R. Bloom
    • 1
  • Vijay Mehra
    • 1
  • Johanne Melancon-Kaplan
    • 1
  • Marianella Castes
    • 2
  • Jacinto Convit
    • 2
  • Patrick J. Brennan
    • 3
  • Thomas H. Rea
    • 4
  • Robert L. Modlin
    • 4
  1. 1.Albert Einstein College of MedicineBronxUSA
  2. 2.Institute of DermatologyCaracasVenezuela
  3. 3.Colorado State Univ.Fort CollinsUSA
  4. 4.University of Southern CaliforniaLos AngelesUSA

Personalised recommendations