Use of Recombinant Vaccinia Viruses to Examine Cytotoxic T Lymphocyte Recognition of Individual Viral Proteins

  • Jonathan Yewdell
  • Jack Bennink
  • Geoffrey Smith
  • Bernard Moss
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 239)


Cytotoxic T lymphocytes (CTL) are believed to play an important role in immunity to tumors and viruses.1 CTL recognize foreign antigens in conjunction with class I major histocompatibility complex (MHC) molecules, and act by either directly lysing cells bearing the foreign antigen, or by releasing molecules with anti-viral and/or anti-tumor activities.2–4 Understanding of CTL has been hindered by difficulties in identifying which foreign antigens are recognized on the target cell surface. We have addressed this problem using recombinant vaccinia viruses containing individual cloned genes from two well characterized viruses which have been extensively used in previous studies of CTL specificity and function, influenza virus (a myxovirus), and vesicular stomatitis virus (a rhabdovirus).


Major Histocompatibility Complex Influenza Virus Vesicular Stomatitis Virus Major Histocompatibility Complex Allele Recombinant Vaccinia Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. M. Zinkernagel and P. D. Doherty, MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity function and responsiveness. Adv. Immunol. 27:51 (1979).Google Scholar
  2. 2.
    F. A. Ennis, Some newly recognized aspects of resistance against and recovery from influenza. Arch. Virol. 73:207 (1982).Google Scholar
  3. 3.
    A. G. Morris, Y.-L. Lin, and B. A. Askonas, Immune interferon release when a cloned cytotoxic T-cell line meets its correct influenza-infected target cell. Nature (London) 295: 150 (1982).Google Scholar
  4. 4.
    J. R. Klein, D. H. Raulet, M. S. Pasternack, and M. J. Bevan, Cytotoxic T lymphocytes produce immune interferon in response to antigen or mitogen. J. Exp. Med. 155: 1198 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    R. B. Effros, P. C. Doherty, W. Gerhard, and J. R. Bennink, Generation of both cross-reactive and virus-specific T-cell populations after immunization with serologically distinct influenza A virus. J. Exp. Med. 145: 557 (1977).PubMedCrossRefGoogle Scholar
  6. 6.
    K. L. Yap and G. L. Ada, Cytotoxic T cells specific for influenza virus-infected target cells. Immunology 32: 151 (1977).PubMedGoogle Scholar
  7. 7.
    H. J. Zweerink, S. A. Courtneidge, J. J. Skehel, M. J. Crumpton, and B. A. Askonas, Cytotoxic T cells kill influenza virus infected cells but do not distinguish between serologically distinct type A viruses. Nature (London) 267: 354 (1977).Google Scholar
  8. 8.
    T. J. Braciale, V. L. Braciale, T. J. Henkel, J. Sambrook, and M. J. Gething, Cytotoxic T lymphocyte recognition of the influenza hemagglutinin gene product expressed by DNA-mediated gene transfer. J. Exp. Med. 159:341 (1984).Google Scholar
  9. 9.
    A. R. M. Townsend, A. J. McMichael, N. P. Carter, J. A. Haddleston, and G. G. Brownlee, Cytotoxic T cell recognition of the influenza nucleoprotein, hemagglutinin expressed in transfected mouse L cells. Cell 39: 13 (1984).Google Scholar
  10. 10.
    G. L. Smith, B. R. Murphy, and B. Moss, Construction and characterization of an infectious vaccinia virus recombinant that expresses the influenza hemagglutinin gene and induces resistance to influenza virus infection in hamsters. Proc. Natl. Acad. Sci. USA 80:7155 (1983).Google Scholar
  11. 11.
    M. Mackett, G. L. Smith, and B. Moss, General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. J. Virol. 49: 857 (1984).PubMedCentralPubMedGoogle Scholar
  12. 12.
    J. R. Bennink, J. W. Yewdell, G. L. Smith, C. Moller, and B. Moss, Recombinant vaccinia virus primes and stimulates influenza haemagglutinin-specific cytotoxic T cells. Nature (London) 311: 578 (1984).CrossRefGoogle Scholar
  13. 13.
    J. R. Bennink, J. W. Yewdell, G. L. Smith, and B. Moss, Recognition of cloned influenza virus hemagglutinin gene products by cytotoxic T lymphocytes. J. Virol. 57: 786 (1986).PubMedCentralPubMedGoogle Scholar
  14. 14.
    J. W. Yewdell, J. R. Bennink, G. L. Smith, and B. Moss, Influenza A virus nucleoprotein is a major target antigen for cross-reactive anti-influenza A virus cytotoxic T lymphocytes. Proc. Natl. Acad. Sci. USA 82: 1785 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    J. R. Bennink, J. W. Yewdell, G. L. Smith, and B. Moss, Anti-influenza cytotoxic T lymphocytes recognize the three viral polymerases and a nonstructural protein: responsiveness to individual viral antigens is MHC controlled. J. Virol., in press (1987).Google Scholar
  16. 16.
    W. E. Biddison, P. C. Doherty, and R. G. Webster, Antibody to influenza virus matrix protein detects a common antigen on the surface of cells infected with type A influenza virus. J. Exp. Med. 146:690 (1977)..Google Scholar
  17. 17.
    C. J. Hackett, B. A. Askonas, R. J. Webster, and K. van Wyke, Quantitation of influenza virus antigens on infected target cells and their recognition by cross-reactive cytotoxic T cells. J. Exp. Med. 151: 1014 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    J. W. Yewdell, E. Frank, and W. Gerhard, Expression of influenza A virus internal antigens on the surface of infected P815 cells. J. Immunol. 126: 1814 (1981).PubMedGoogle Scholar
  19. 19.
    T. J. Braciale, Immunologic recognition of influenza virus-infected cells. II. Expression of influenza A matrix protein on the infected cell surface and its role in recognition by cross-reactive cytotoxic T cells. J. Exp. Med. 146:673 (1977).Google Scholar
  20. 20.
    G. L. Ada and K. L. Yap, Matrix protein expressed at the surface of cells infected with influenza viruses. Immunochemistry 14: 643 (1977).Google Scholar
  21. 21.
    C. S. Reiss and J. L. Schulman, Influenza type A M protein: expression on infected cells is responsible for cross-reactive recognition by cytotoxic thymus derived lymphocytes. Infec. Immun. 29:719 (1980).Google Scholar
  22. 22.
    R. A. Lamb, S. L. Zebedee, and C. D. Richardson, Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. Cell 40: 627 (1985).Google Scholar
  23. 23.
    K. L. Rosenthal and R. M. Zinkernagel, Cross-reactive cytotoxic T cells to serologically distinct vesicular stomatitis viruses. J. Immunol. 124: 2301 (1980).PubMedGoogle Scholar
  24. 24.
    A. H. Hale, D. N. Witte, D. Baltimore, and H. N. Eisen, Vesicular stomatitis virus glycoprotein is necessary for H-2-restricted lysis of infected cells by cytotoxic T lymphocytes. Proc. Natl. Acad. Sci. USA 75:970 (1978).Google Scholar
  25. 25.
    R. M. Zinkernagel, A. Althage, and J. Holland, Target antigens for H-2-restricted vesicular stomatitis virus-specific cytotoxic T cells. J. Immunol. 121: 744 (1978).PubMedGoogle Scholar
  26. 26.
    J. W. Yewdell, J. R. Bennink, M. Hackett, L.LeFrancois, D. S. L.les, and B. Moss, Recognition of cloned vesicular stomatitis virus internal and external gene products by cytotoxic T lymphocytes. J. Exp. Med. 163: 1529 (1986).Google Scholar
  27. 27.
    A. R. M. Townsend, F. M. Gotch, and J. Davey, Cytotoxic T cells recognize fragments of the influenza nucleoprotein. Cell 42: 457 (1985).Google Scholar
  28. 28.
    L. Puddington, M. J. Bevan, J. K. Rose, and L. Lefrancois, N protein is the predominant antigen recognized by vesicular stomatitis virus-specific cytotoxic T cells. J. Virol. in press (1986).Google Scholar
  29. 29.
    J. R. Bennink, J. W. Yewdell, and W. Gerhard, A viral polymerase involved in recognition of influenza virus-infected cells by a cytotoxic T-cell clone. Nature (London) 296: 75 (1982).Google Scholar
  30. 30.
    A. R. M. Townsend, J. J. Skehel, P. M. Taylor, and P. A. Palese, Recognition of influenza A virus nucleoprotein by an H-2 restricted cytotoxic T cell clone. Virology 133: 456 (1984).Google Scholar
  31. 31.
    U. Kees and P. J. Krammer, Most influenza A virus-specific memory cytotoxic T lymphocytes react with antigenic epitopes associated with internal virus determinants. J. Exp. Med. 159:365 (1984).Google Scholar
  32. 32.
    F. Gotch, A. McMichael, G. Smith, and B. Moss, Identification of the viral molecules recognized by influenza specific human cytotoxic T lymphocytes. J. Exp. Med. in press (1987).Google Scholar
  33. 33.
    P. Pala and B. A. Askonas, Low responder MHC alleles for Tc recognition of influenza nucleoprotein. Immunogenetics 23: 379 (1986).Google Scholar
  34. 34.
    J. W. Yewdell, R. G. Webster, and W. U. Gerhard, Antigenic variation in three distinct determinants of an influenza type A haemagglutinin molecule. Nature (London) 279: 246 (1979).Google Scholar
  35. 35.
    K. L. Yap, G. L. Ada, and I. F. C. McKenzie, Transfer of specific cytotoxic T lymphocytes protects mice inoc-ulated with influenza virus. Nature (London) 273: 238 (1978).Google Scholar
  36. 36.
    Y. L. Yin and B. A. Askonas, Biological properties of an influenza A virus-specific killer T cell clone. J. Exp. Med. 154:225 (1981).Google Scholar
  37. 37.
    J. R. Bennink, J. W. Yewdell, A. Feldman, W. Gerhard, and P. C. Doherty, The role of virus-specific CTL in vivo, in: “T Cell Clones,” H. von Boehmer and W. Haas, eds., Elsevier, New York (1984).Google Scholar
  38. 38.
    A. E. Lukacher, V. L. Braciale, and T. J. Braciale, In vivo effector function of influenza virus-specific cytotoxic T lymphocyte clones is highly specific. J. Exp. Med. 160:814 (1984).Google Scholar
  39. 39.
    M. B. A. Oldstone, P. Blount, P. J. Southern, and P. W. Lampert, Cytoimmunotherapy for persistent virus infection reveals a unique clearance pattern from the central nervous system. Nature (London) 321: 239 (1986).Google Scholar
  40. 40.
    R. M. Zinkernagel, H. Hengartner, and L. Stitz, On the role of viruses in the evolution of immune responses. Brit. Med. Bull. 41:92 (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Jonathan Yewdell
    • 1
  • Jack Bennink
    • 1
  • Geoffrey Smith
    • 2
    • 3
  • Bernard Moss
    • 3
  1. 1.Wistar InstitutePhiladelphiaUSA
  2. 2.University of CambridgeCambridgeEngland
  3. 3.Laboratory for Viral Diseases, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations