Advertisement

The Cavitation Zone

  • L. D. Rozenberg
Part of the Ultrasonic Technology book series (ULTE)

Abstract

In the overwhelming majority of studies devoted to various physical aspects of ultrasonic cavitation (see, e.g., Part IV and portions of Part V of the present book), the authors are concerned with the behavior of the individual isolated cavitation bubble. In reality such a bubble is very rarely encountered, its existence being contingent upon a set of conditions that are difficult to realize. As a rule, even at acoustic pressures not too far above the cavitation threshold, an aggregate of cavitation bubbles appears at once, taking up a definite region of space, which we have chosen to call the cavitation zone. Inspite of the foregoing, even in Flynn’s excellent survey [1] and Pernik’s book [2] the bulk of the text refers to the behavior of an individual bubble, with only two or three pages given over to the cavitation zone.

Keywords

Sound Pressure Cavitation Bubble Bubble Radius Cavitation Erosion Wave Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. G. Flynn, Physics of Acoustic Cavitation in Liquids, Physical Acoustics (W. P. Mason, ed.), Vol. 1B, Academic Press, New York (1964).Google Scholar
  2. 2.
    A. D. Pernik, Cavitation Problems, Sudpromgiz (1963).Google Scholar
  3. 3.
    V. A. Akulichev and L. D. Rozenberg, Certain relations in a cavitation region, Akust Zh., 11 (3): 287 (1965).Google Scholar
  4. 4.
    M. G. Sirotyuk, Energetics and dynamics of the cavitation zone, Akust. Zh., 13 (2): 265 (1967).Google Scholar
  5. 5.
    V. A. Akulichev, Experimental investigation of an elementary cavitation zone, Akust. Zh., 14 (3): 337 (1968).Google Scholar
  6. 6.
    M. G. Sirotyuk, Experimental investigation of the growth of ultrasonic cavitation at 500 kc, Akust. Zh., 8 (2): 216 (1962).Google Scholar
  7. 7.
    I. P. Golyamina, Ferrite magnetostrictive radiators, Sources of High-Intensity Ultrasound (L. D. Rozenberg, ed), Vol. 1, Plenum Press, New York (1969), pp. 165–222.Google Scholar
  8. 8.
    L. D. Rozenberg, Einige physikalische Erscheinungen die in hochintensiven Ultraschallfeldern entstehen [Some physical effects in high-intensity ultrasonic fields], Fourth Internat. Congr. Acoustics, Vol. 2, Copenhagen (1962), p. 179.Google Scholar
  9. 9.
    V. A. Akulichev, L. D. Rozenberg, and M. G. Sirotyuk, Certains relations dans le champ de la cavitation ultra-sonore [Certain relations in the field of ultrasonic cavitation], Proc. Fifth Internat. Congr. Acoustics, E64, Liège (1965).Google Scholar
  10. 10.
    D. Messino, D. Sette, and F. Wanderlingh, Statistical approach to ultrasonic cavitation, J. Acoust. Soc. Am., 35 (10): 1575 (1963).CrossRefGoogle Scholar
  11. 11.
    M. G. Sirotyuk, Energy balance of an acoustic field in the presence of cavitation, Akust. Zh., 10 (4): 465 (1964).Google Scholar
  12. 12.
    L. D. Rozenberg, Estimation of the cavitation efficiency of acoustic energy, Akust. Zh., 11 (1): 121 (1965).Google Scholar
  13. 13.
    L. D. Rozenberg and M. G. Sirotyuk, Apparatus for the generation of focused high-intensity ultrasound, Akust. Zh., 5 (2): 206 (1959).Google Scholar
  14. 14.
    V. A. Akulichev, Investigation of the Onset and Development of Acoustic Cavitation, Candidate’s Dissertation, Akust. Inst. AN SSSR (1966).Google Scholar
  15. 15.
    I. G. Mikhailov and V. A. Shutilov, A simple technique for the observation of cavitation in a liquid, Akust. Zh., 5 (3): 376 (1959).Google Scholar
  16. 16.
    V. A. Akulichev, Yu. Ya. Boguslayskii, A. I. Ioffe, and K. A. Naugol’nykh, Radiation of finite-amplitude spherical waves, Akust. Zh., 13 (3): 321 (1967).Google Scholar
  17. 17.
    V. P. Korobeinikov, R. S. Mel’nikova, and E. V. Ryazanov, Theory of Point Detonation, Moscow (1961).Google Scholar
  18. 18.
    Y. Kikuchi and H. Shimizu, On the variation of acoustic radiation resistance in water under ultrasonic cavitation, J. Acoust. Soc. Am., 31 (10): 1385 (1959).CrossRefGoogle Scholar
  19. 19.
    L. D. Rozenberg and M. G. Sirotyuk, On the radiation of sound in the presence of cavitation, Akust. Zh., 6 (4): 478 (1960).Google Scholar
  20. 20.
    E. V. Romanenko, Ultrasonic receivers and methods for their calibration, Sources of High-Intensity Ultrasound (L. D. Rozenberg, ed), Vol. 2, Plenum Press, New York (1969), p. 187.Google Scholar
  21. 21.
    M. G. Sirotyuk, Behavior of cavitation bubbles at high ultrasonic intensities, Akust. Zh., 7(4):499 (1961).Google Scholar
  22. 22.
    A. Sommerfeld, Thermodynamik und Statistik ( Thermodynamics and Statistics ), Wiesbaden (1952).zbMATHGoogle Scholar
  23. 23.
    A. S. Bebchuk, On the cavitation damage of solids, Akust. Zh., 3 (1): 90 (1957).Google Scholar
  24. 24.
    Y. Olaf, Oberflachenreinigung mit Ultraschall [Ultrasonic surface cleaning], Acustica, 7 (5): 253 (1957).Google Scholar
  25. 25.
    A. E. Crawford, The measurement of cavitation, Ultrasonics, 2 (3): 120–123 (1964).CrossRefGoogle Scholar
  26. 26.
    L. D. Rozenberg, On the physics of ultrasonic cleaning, Ultrasonic News, 4 (4): 16 (1960).Google Scholar
  27. 27.
    A. Weissler, Ultrasonic cavitation measurements by chemicals, Proc. Fourth Internat. Congr. Acoustics, J32 (1962).Google Scholar
  28. 28.
    Shin Pin Liu, Chlorine release test for cavitation measurements, J. Acoust. Soc. Am., 36 (5): 1019A (1964).Google Scholar
  29. 29.
    M. Degrois and I. Badilian, Influence du phénomène de relaxation, produit au sein des solutions soumises d’un rayonnement ultrasonore, sur le rendement des effets chimiques et la luminescence [Influence of relaxation phenomena in ultrasonically irradiated solutions on the efficiency of chemical and luminescence effects], Compt. Rend., 254: 231 (1962).Google Scholar
  30. 30.
    A. S. Bebchuk, Yu. Ya. Borisov, and L. D. Rozenberg, On cavitation erosion, Akust. Zh., 4 (4): 361 (1958).Google Scholar
  31. 31.
    R. M. Boucher and B. Polansky, The measurement of ultrasonic cavitation, IEEE Symp. Ultrasonics, Los Angeles (1964).Google Scholar
  32. 32.
    I. A. Roi, Initiation and development of ultrasonic cavitation, Akust. Zh., 3 (1): 3 (1957).Google Scholar
  33. 33.
    Yu. A. Aleksandrov, G. S. Voronov, V. M. Gorbunkov, N. V. Delone, and Yu. N. Nechaev, Bubble Chambers, Gosatomizdat (1963).Google Scholar
  34. 34.
    M. G. Sirotyuk, Ultrasonic cavitation processes at elevated hydrostatic pressures, Akust. Zh., 12 (2): 231 (1966).Google Scholar
  35. 35.
    J. Ackeret, Experimentalle und theoretische Untersuchungen über Hohlraumbildung im Wasser [Experimenta. and Theoretical Studies of Cavitation in Water], Eidgenöss. Materialprüfungsanstait, E. T. H., Zurich (1930).Google Scholar
  36. 36.
    L. A. Éinshtein, Trudy TsAGI, No. 584 (1946).Google Scholar
  37. 37.
    B. S. Kogarko, A model of a cavitating liquid, Dokl. Akad. Nauk SSSR, 137 (6): 1331 (1961).MathSciNetGoogle Scholar
  38. 38.
    B. S. Kogarko, One-dimensional nonsteady motion of a liquid with the onset and development of cavitation, Dokl. Akad. Nauk SSSR, 155 (4): 779 (1964).Google Scholar
  39. 39.
    Yu. Ya. Boguslayskii, Onset and development of a cavitation rarefaction wave, Akust. Zh., 13 (4): 538 (1967).Google Scholar
  40. 40.
    L. D. Landau and E. M. Lifshits, Mechanics of Continuous Media, GTTI (1954).Google Scholar
  41. 41.
    Rayleigh, On pressure developed in a liquid during the collapse of a spherical cavity, Phil. Mag., 34: 94 (1917).Google Scholar
  42. 42.
    Yu. Ya. Boguslayskii, Propagation of sound waves in a liquid during cavitation, Akust. Zh., 14 (2): 185 (1968).Google Scholar
  43. 43.
    R. H. Cole, Underwater Explosions, Princeton Univ. Press (1948).Google Scholar
  44. 44.
    Yu. Ya. Boguslayskii, Cavitation zone in a convergent spherical sound wave, Akust. Zh., 14 (3): 463 (1968).Google Scholar
  45. 45.
    F. A. Bronin, Investigation of the Cavitation Damage and Dispersion of Solids in a High-Intensity Ultrasonic Field, Dissertation, Moskov. Inst. Stall i Spetsial’nykh Splavov, Moscow (1967).Google Scholar
  46. 46.
    Yu. Ya. Boguslayskii and Yu. G. Statnikov, Mechanism of the generation of acoustic streaming in a sound field and calculation of its velocity in a cavitation zone, Fourth All-Union Conference on Acoustics, BV1, Moscow (1968).Google Scholar
  47. 47.
    L. D. Rozenberg, Ultrasonic focusing radiators, Sources of High-Intensity Ultrasound (L. D. Rozenberg, ed), Vol. 1, Plenum Press, New York (1969), pp. 223–309.Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • L. D. Rozenberg

There are no affiliations available

Personalised recommendations