Advertisement

Experimental Investigations of Ultrasonic Cavitation

  • M. G. Sirotyuk
Part of the Ultrasonic Technology book series (ULTE)

Abstract

If cavitation is to be generated specifically for the purpose of doing useful work (cleaning of parts, dispersion of liquids and solids, etc.), one must know how to control the attendant cavitation processes. With this in mind it is little wonder that so many researchers have turned their attention to these effects in recent times. This is evidenced by the constantly growing number of publications both in the periodical literature and in separate book form. The cumulative wealth of theoretical and experimental material has prompted the publication of several survey papers in the last three years (e.g. [1–4]) on the topic of acoustic cavitation.

Keywords

Focal Spot Acoustic Pressure Cavitation Bubble Sound Field Bubble Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Pernik, Problems of Cavitation, Sudpromgiz (1963).Google Scholar
  2. 2.
    E. Webster, Cavitation, Ultrasonics, 1: 39 (1963).CrossRefGoogle Scholar
  3. 3.
    H. G. Flynn, Physics of Acoustic Cavitation in Liquids, Physical Acoustics (W.P. Mason, ed.), Vol. 1B, Academic Press, New York (1964).Google Scholar
  4. 4.
    M. G. Sirotyuk, Ultrasonic cavitation (review), Akust. Zh., 8 (3): 255 (1962).Google Scholar
  5. 5.
    M. Kornfel’d, Elasticity and Strength of Liquids, Moscow-Leningrad (1951).Google Scholar
  6. 6.
    Ya. B. Zel’dovich, Theory of the formation of a new phase, cavitation, Zh. Éksp. Teor. Fiz., 12 (11–12): 525 (1942).Google Scholar
  7. 7.
    R. Esche, Untersuchung der Schwingungskavitation in Flüssigkeiten [Investigation of vibration-induced cavitation in liquids], Akust. Beih., 4: 208 (1952).Google Scholar
  8. 8.
    D. Messino, D. Sette, and F. Wanderligh, Statistical approach to ultrasonic cavitation, J. Acoust. Soc. Am., 35 (10): 1575 (1963).CrossRefGoogle Scholar
  9. 9.
    M. Strassberg, Onset of ultrasonic cavitation in tap water, J. Acoust. Soc. Am., 31 (2): 163 (1959).CrossRefGoogle Scholar
  10. 10.
    W. J. Galloway, An experimental study of acoustically induced cavitation in liquids, J. Acoust. Soc. Am., 26 (5): 849 (1954).CrossRefGoogle Scholar
  11. 11.
    V. A. Akulichev and V.I. Il’ichev, Spectral indication of the origin of ultrasonic cavitation in water, Akust. Zh., 9 (2): 158 (1963).Google Scholar
  12. 12.
    W. Connolly and F. E. Fox, Ultrasonic cavitation thresholds in water, J. Acoust. Soc. Am., 26 (5): 843 (1954).CrossRefGoogle Scholar
  13. 13.
    I. T. Alad’ev (ed.), Handbook: Problems in the Physics of Boiling, Izd. “Mir” (1964).Google Scholar
  14. 14.
    E. N. Harvey, R. D. McElroy, and A. H. Whiteley, On cavity formation in water, J. Appl. Phys., 18: 162 (1947).CrossRefGoogle Scholar
  15. 15.
    R. T. Knapp, Cavitation and nuclei, Trans. ASME, 80: 6 (1958).Google Scholar
  16. 16.
    F. G. Blake, Tech. Mem. Acoustics Res. Lab., Harvard Univ., Cambridge, No. 9 (1949).Google Scholar
  17. 17.
    Yu. A. Aleksandrov, G. S. Voronkov, V. M. Gorbunkov, N. B. Delone, and Yu. I. Nechaev, Bubble Chambers, Gosatomizdat (1963).Google Scholar
  18. 18.
    W. E. Whyberew, G. D. Kinzer, and R. Gunn, Electrification of small air bubbles in water, J. Geophys. Res., 57 (4): 453 (1952).Google Scholar
  19. 19.
    V. A. Akulichev, Hydration of ions and the cavitation resistance of water, Akust. Zh., 12 (2): 160 (1966).Google Scholar
  20. 20.
    D. Lieberman, Radiation-induced cavitation, Phys. Fluids, 2 (4): 466 (1959).CrossRefGoogle Scholar
  21. 21.
    D. Sette, Sonic cavitation and ionizing radiation, Proc. Third Internat. Congr. Acoustics, Stuttgart (1959), Vol. I, p. 330 (1961).Google Scholar
  22. 22.
    D. Sette and F. Wanderlingh, Nucleation by cosmic rays in ultrasonic cavitation, Phys. Rev., 125 (2): 409 (1962).CrossRefGoogle Scholar
  23. 23.
    M. Bertoletti and D. Sette, On nucleation processes in ultrasonic cavitation and bubble chambers, Proc. Fourth Internat. Congr. Acoustics, Copenhagen (1962), Paper J26.Google Scholar
  24. 24.
    R. Macleay and L. Holroyd, Space-time analysis of the sonoluminescence emitted by cavitated water, J. Appl. Phys., 32 (3): 449 (1961).CrossRefGoogle Scholar
  25. 25.
    B. E. Noltingk and E. A. Neppiras, Cavitation produced by ultrasonics, Proc. Phys. Soc., 63B (9): 674 (1950);Google Scholar
  26. B. E. Noltingk and E. A. Neppiras, Cavitation produced by ultrasonics, Proc. Phys. Soc., 64B: 1032 (1951).Google Scholar
  27. 26.
    M. Minnaert, On musical air-bubbles and the sounds of running water, Phil. Mag., 16 (7): 235 (1933).Google Scholar
  28. 27.
    L. D. Rozenberg and M. G.Sirotyuk, Apparatus for the generation of focused ultrasound of high intensity, Akust. Zh., 5 (2): 206 (1959).Google Scholar
  29. 28.
    L. D. Rozenberg and M. G. Sirotyuk, A focusing radiator for the generation of superhigh-intensity ultrasound in 1 Mc, Akust. Zh., 9 (1): 61 (1963).Google Scholar
  30. 29.
    M. G. Sirotyuk, Cavitation strength of water and its distribution of cavitation nuclei, Akust. Zh., 11 (3): 380 (1965).Google Scholar
  31. 30.
    I. Schmid, Kinematographische Untersuchung der Einzelblasen-Kavitation [Motion picture investigation of the individual cavitation bubble], Acustica, 9 (4): 321 (1959).Google Scholar
  32. 31.
    A. T. Ellis, Techniques for pressure pulse measurements and high–speed photography in ultrasonic cavitation, Cavitation in Hydrodynamics, H.M.S.O., London (1956), 8–1–8–32; Discussion Cl–C3.Google Scholar
  33. 32.
    E. V. Romanenko, Miniature piezoelectric ultrasonic receivers, Akust. Zh., 4 (3): 342 (1957).Google Scholar
  34. 33.
    L. D. Rozenberg and M. G. Sirotyuk, Factors limiting the acoustic power of a transducer operating in a liquid, Collected Papers of the All-Union Sci. Tech. Conf. Application of Ultrasonics in Industry, Ultrasonic Instruments for Measurement and Inspection, Moscow (1960), p. 157.Google Scholar
  35. 34.
    L. D. Rozenberg, Einige physikalische Erscheinungen, die in hochintensiven Ultraschallfeldern entstehen [Some physical phenomena occurring in high-intensity ultrasonic fields], Fourth Internat. Congr. Acoustics, Copenhagen, Vol. 2, p. 179 (1962).Google Scholar
  36. 35.
    M. G.Sirotyuk,Behavior of cavitation bubbles at high ultrasonic intensities, Akust. Zh., 7(4):499 (1961).Google Scholar
  37. 36.
    G. A. Khoroshev, Collapse of vapor-air cavitation bubbles, Akust. Zh., 9 (3): 340 (1963).Google Scholar
  38. 37.
    Rayleigh, On pressure developed in a liquid during the collapse of a spherical cavity, Phil. Mag., 34: 94 (1917).Google Scholar
  39. 38.
    V. A. Akulichev, Pulsations of cavitation bubbles in the field of an ultrasonic wave, Akust. Zh., 13 (2): 170 (1967).Google Scholar
  40. 39.
    I. G. Mikhailov and V. A. Shutilov, A simple technique for the observation of cavitation in a liquid, Akust. Zh., 5 (3): 376 (1959).Google Scholar
  41. 40.
    M. G. Sirotyuk, Energetics and dynamics, of the cavitation zone, Akust. Zh., 13 (2): 265 (1967).Google Scholar
  42. 41.
    M. G. Sirotyuk, Experimental investigation of the growth of ultrasonic cavita- tion at 500 kc, Akust. Zh., 8(2):216 (1962).Google Scholar
  43. 42.
    V. A. Akulichev, Experimental investigation of an elementary cavitation zone, Akust. Zh., 14 (3): 337 (1968).Google Scholar
  44. 43.
    G. W. Willard, Ultrasonically induced cavitation in water: a step-by-step process, J. Acoust. Soc. Am., 25 (4): 667 (1953).MathSciNetCrossRefGoogle Scholar
  45. 44.
    W. Guth, The formation of pressure waves by cavitation, Cavitation in Hydrodynamics, H. M. S. O., London (1956), 6, VII-X.Google Scholar
  46. 45.
    V. F. Kazantsev, Motion of gas bubbles in a liquid under the action of the Bjerknes forces arising in an acoustic field, Dokl. Akad. Nauk SSSR, 129 (1): 74 (1959).Google Scholar
  47. 46.
    P. D. Jarmen and K. J. Taylor, Some physical effects of acoustically induced cavitation in liquid helium and liquid nitrogen, J. Acoust. Soc. Am., 39 (3): 584 (1966).CrossRefGoogle Scholar
  48. 47.
    I. N. Kanevskii, Steady forces arising in a sound field, Akust. Zh., 7 (1): 3 (1961).MathSciNetGoogle Scholar
  49. 48.
    M. G. Sirotyuk, Energy balance of an acoustic field in the presence of cavitation, Akust. Zh., 10 (4): 465 (1964).Google Scholar
  50. 49.
    F. E. Borgnis, On the forces due to acoustic waves in the measurement of acoustic intensity, J. Acoust. Soc. Am., 25 (3): 546 (1953).CrossRefGoogle Scholar
  51. 50.
    W. G. Cady and C. E. Gittings, On the measurement of power radiated from an acoustic source, J. Acoust. Soc. Am., 25(5):892 (1953).Google Scholar
  52. 51.
    I. P. Golyamina, Magnetostrictive ferrites as a material for electroacoustic transducers, Akust. Zh., 6 (3): 311 (1960).Google Scholar
  53. 52.
    L. D. Rozenberg and M. G. Sirotyuk, Radiation of sound into a liquid in the presence of cavitation, Akust. Zh., 6 (4): 478 (1960).Google Scholar
  54. 53.
    M. S. Plesset and S. A. Zwick, The growth of vapor bubbles in superheated liquids, J. Appl. Phys., 25 (4): 493 (1954).MathSciNetzbMATHCrossRefGoogle Scholar
  55. 54.
    L. I. Ganeva and I. G. Golyamina, Properties of magnetostrictive ferrites at high temperatures, Akust. Zh., 9 (4): 413 (1963).Google Scholar
  56. 55.
    Winkler, Chemischtechnische Untersuchungsmethoden [Chemical Engineering Research Methods], Vol. 1, Lunge, Berlin (1921), 5, p. 558.Google Scholar
  57. 56.
    A. S. Bebchuk, On the cavitation destruction of solids, Akust. Zh., 3 (1): 90 (1957).Google Scholar
  58. 57.
    A. S. Bebchuk, Investigation of the Cavitation Damage of Solids and Surface Films in a Sound Field, Candidate’s Dissertation, Akust. Inst. AN SSSR, Moscow (1960).Google Scholar
  59. 58.
    M. G. Sirotyuk, Effect of the temperature and gas content of the liquid on cavitation processes, Akust. Zh., 12 (1): 87 (1966).Google Scholar
  60. 59.
    M. G. Sirotyuk, Ultrasonic cavitation processes at elevated hydrostatic pressures, Akust. Zh., 12(2):231 (1966).Google Scholar
  61. 60.
    M. G. Sirotyuk, An ultrasonic focusing concentrator of solid material, Akust.’ Zh., 7 (4): 499 (1961).Google Scholar
  62. 61.
    B. A. Agranat, V. I. Bashkirov, and Yu. I. Kitaigorodskii, Cavitation damage of metals and alloys in an ultrasonic field, Application of Ultrasonics in Machinery Construction, Minsk (1964).Google Scholar
  63. 62.
    B. A. Agranat, V. I. Bashkirov, and Yu. I. Kitaigorodskii, Technique for increasing the efficiency of ultrasonic effects on processes in liquids, Ul’trazvuk. Tekh., 3:28 (1964)Google Scholar
  64. 63.
    N. A. Roi, Onset and development of ultrasonic cavitation (review), Akust. Zh., 3 (1): 3 (1957).Google Scholar
  65. 64.
    V.A. Akulichev and L. D. Rozenberg, Certain relations in a cavitation region, Akust. Zh., 11 (3): 287 (1965).Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • M. G. Sirotyuk

There are no affiliations available

Personalised recommendations