Skip to main content

Pulsations of Cavitation Voids

  • Chapter
High-Intensity Ultrasonic Fields

Part of the book series: Ultrasonic Technology ((ULTE))

Abstract

All effects observed in connection with ultrasonic cavitation, such as cavitation erosion, sonoluminescence, cavitation noise, and the initiation of chemical reactions, are related to the existence and characteristic behavior of cavitation voids in an intense ultrasonic wave field. This makes the investigation of the motion of cavitation bubbles or voids one of the central problem areas of ultrasonic cavitation research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Y. Hsieh and M. S. Plesset, Theory of rectified diffusion of mass into gas bubbles, J. Acoust. Soc. Am., 33 (2): 206 (1961).

    MathSciNet  Google Scholar 

  2. A. Kapustina and Yu. G. Statnikov, Influence of acoustic microstreaming on the mass transfer in a gas bubble— liquid system, Akust. Zh., 13 (3): 383 (1967).

    Google Scholar 

  3. W. Güth, Kinematographische Aufnahmen von Wasserdampfblasen [Motion pictures of water vapor bubbles], Acustica, 4 (5): 445 (1954).

    Google Scholar 

  4. A. T. Ellis, Techniques for Pressure Pulse Measurements and High-Speed Photography in Ultrasonic Cavitation, Cavitation in Hydrodynamics, London (1956).

    Google Scholar 

  5. E. Mandry and W. Guth, Kinematographische Untersuchungen der Schwingungskavítation [Motion picture studies of vibration-induced cavitation], Acustica, 7 (4): 241 (1957).

    Google Scholar 

  6. I. Schmid, Kinematographische Untersuchung der Einzelblasen-Kavitation [Motion picture investigation of the individual cavitation bubble], Acustica, 9 (4): 321 (1959).

    Google Scholar 

  7. M. Kornfel’d, Elasticity and Strength’of Liquids, Moscow-Leningrad (1951).

    Google Scholar 

  8. W. G ith, Zur Entstehung der Stosswellen bei der Kavitation [Formation of shock waves in cavitation], Acustica, 6(6):526 (1956).

    Google Scholar 

  9. H. Lamb, Hydrodynamics, New York (1945).

    Google Scholar 

  10. Rayleigh, On pressure developed in a liquid during the collapse of a spherical cavity, Phil. Mag., 34: 94 (1917).

    MATH  Google Scholar 

  11. B. E. Noltingk and E. A.Neppiras, Cavitation produced by ultrasonics, Proc. Phys. Soc., 63B: 675 (1950)

    Google Scholar 

  12. B. E. Noltingk and E. A.Neppiras, Cavitation produced by ultrasonics, Proc. Phys. Soc., 648: 1032 (1951).

    Google Scholar 

  13. H. G. Flynn, Physics of Acoustic Cavitation in Liquids, Physical Acoustics (W. P. Mason, ed), Vol. 1B, Academic Press, New York (1964).

    Google Scholar 

  14. M. I. Vorotnikova and R. I. Soloukhin, A calculation of the pulsations of gas bubbles in an incompressible liquid subject to a periodically varying pressure, Akust. Zh., 10 (1): 34 (1964).

    Google Scholar 

  15. L. Trilling, The collapse and rebound of a gas bubble, J. Appt. Phys., 23 (1): 14 (1952).

    Article  MathSciNet  Google Scholar 

  16. C. Herring, Theory of the Pulsation of the Gas Bubbles Produced by an Underwater Explosion, OSRD Rept. No. 236 (1941).

    Google Scholar 

  17. R. H. Cole, Underwater Explosions, Princeton Univ. Press (1948).

    Google Scholar 

  18. F. R. Gilmore,TheGrowthorCollapse of a Spherical Bubble in a Viscous Compressible Fluid, California Inst. Technology Rept. No. 26–4 (1952).

    Google Scholar 

  19. M. Minnaert, On musical air-bubbles and the sounds of running water, Phil. Mag., 16 (17): 235 (1933).

    Google Scholar 

  20. W. Y. Cunningham, Introduction to Nonlinear Analysis, New York (1958).

    Google Scholar 

  21. M. G. Sirotyuk, On the behavior of cavitation bubbles at large ultrasonic intensities, Akust. Zh., 7 (4): 499 (1961).

    Google Scholar 

  22. A. A. Andronov, A. V. Vitt, and S. Z. Khaikin, Theory of Oscillations, Moscow (1953).

    Google Scholar 

  23. A. A. Andronov, Mathematical problems in the theory of self-sustained oscillations, Collected Works, Izd. AN SSSR (1956).

    Google Scholar 

  24. J. J. Stoker, Nonlinear Vibration in Mechanical and Electrical Systems, New York (1950).

    Google Scholar 

  25. M. Strasberg, Onset of ultrasonic cavitation in tap water, J. Acoust. Soc. Am., 31 (2): 163 (1959).

    Article  Google Scholar 

  26. M. G. Sirotyuk,Energetics and dynamics of the cavitation zone, Akust. Zh., 13 (2): 265 (1967).

    Google Scholar 

  27. L. A. Glikman, V.P. Tékt, and Yu. E. Zabachev, On the physical nature of cavitation destruction, Zh. Tekh. Fiz., 25 (2): 280 (1955).

    Google Scholar 

  28. E. Meyer, High-Intensity Sound in Liquids, Underwater Acoustics (V. M. Albers, ed.), Plenum Press, New York (1961), pp. 139–158.

    Google Scholar 

  29. L. D. Landau and E. M. Lifshits, Mechanics of Continuous Media, Moscow (1953).

    Google Scholar 

  30. V. A. Akulichev, Yu. Ya. Boguslayskii, A. I. Ioffe, and K. A A. Naugol’nykh, Radiation of finite-amplitude spherical waves, Akust. Zh., 13 (3): 321 (1967).

    Google Scholar 

  31. R. H. Mellen, An experimental study of the collapse of a spherical cavity in water, J. Acoust. Soc. Am., 28 (3): 447 (1956).

    Article  Google Scholar 

  32. R. T. Knapp, Recent investigation of the mechanics of cavitation and cavitation damage, Trans. ASME (Annual Meeting), p. 106 (1954).

    Google Scholar 

  33. M. G. Sirotyuk, Effect of the temperature and gas content of the liquid on cavitation processes, Akust. Zh., 12 (1): 87 (1966).

    Google Scholar 

  34. T. Lange, Methoden zur Untersuchung der Schwingungskavitation in Flüssigkeiten mit Ultraschall [Methods for the investigation of vibration-induced cavitation in liquids with ultrasound], Akust. Beih., 2: 75 (1952).

    Google Scholar 

  35. G. W. Willard, Ultrasonically induced cavitation in water, J. Acoust. Soc. Am., 25 (4): 667 (1953).

    Article  MathSciNet  Google Scholar 

  36. L. O. Makarov and L. D. Rozenberg, On the mechanism of ultrasonic cleaning, Akust. Zh., 3 (4): 37 (1957).

    Google Scholar 

  37. M. G. Sirotyuk, Experimental investigation of the growth of ultrasonic cavitation at 500 kc, Akust. Zh., 8 (2): 216 (1962).

    Google Scholar 

  38. G’. G. Malkin, Selected Problems in the Theory of Nonlinear Oscillations, Moscow (1956).

    Google Scholar 

  39. G. T. Macfarlane, On the energy spectrum of an almost-periodic succession of pulses, Proc. IRE, 37: 1139 (1949).

    Article  Google Scholar 

  40. L. Bohn, Schalldruckverlauf und Spektrum bei der Schwingungskavitation [Sound pressure variation and spectrum of vibration-induced cavitation], Akust. Beih., 2: 201 (1952).

    Google Scholar 

  41. R. Esche, Untersuchung der Schwingungskavitation in’Flüssigkeiten [Investigation of vibration-induced cavitation in liquids], Akust. Beih., 4: 208 (1952).

    Google Scholar 

  42. Y. Kikuchi (ed.), Engineering Aspects of Ultrasonic Cavitation, Research Group of Ultrasonic Cavitation, Japan (1961).

    Google Scholar 

  43. V. A. Akulichev and V. I. Il’ichev, Spectral indication of the origin of ultrasonic cavitation in water, Akust. Zh., 9 (2): 158 (1963).

    Google Scholar 

  44. R. Hickling and M. S. Plesset, Collapse and rebound of a spherical bubble in water, Phys. Fluids, 7 (1): 7 (1964).

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer Science+Business Media New York

About this chapter

Cite this chapter

Akulichev, V.A. (1971). Pulsations of Cavitation Voids. In: Rozenberg, L.D. (eds) High-Intensity Ultrasonic Fields. Ultrasonic Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5408-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5408-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5410-0

  • Online ISBN: 978-1-4757-5408-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics