Skip to main content

Acoustic Streaming

  • Chapter

Part of the book series: Ultrasonic Technology ((ULTE))

Abstract

Sound at high intensity levels in gases and liquids is accompanied by stationary (time-independent) flows known as acoustic streaming (other terms encountered in the literature are “acoustic wind” or “quartz wind”). These flows occur either in a free nonuniform sound field or (particularly) near various types of obstacles immersed in a sound field or near oscillating bodies. They are always of a rotational character. Their velocity increases with the sound intensity, but, even at the highest intensities currently available, the velocity remains smaller than the particle velocity in the sound wave.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. L. Nyborg, Acoustic streaming, Physical Acoustics (W. P. Mason, ed.), Voi. 2, Part B, Academic Press, New York (1965).

    Google Scholar 

  2. H. Medwin and I. Rudrik, Surface and volume sources of vorticity in acoustic fields, J. Acoust. Soc. Am., 25 (3): 538 (1953).

    Article  Google Scholar 

  3. P. J. Westervelt, The theory of steady rotational flow generated by sound fields, J. Acoust. Soc. Am., 25(1): 60, 799 (1953).

    Article  Google Scholar 

  4. C. Eckart, Vortices and streams caused by sound waves, Phys. Rev., 73 (1): 68 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  5. Yu. G. Statnikov, Streaming induced by finite-amplitude sound, Akust. Zh., 13 (1): 146 (1967).

    Google Scholar 

  6. E. N. Libermann, Second viscosity of liquids, Phys. Rev., 75 (9): 1415 (1949).

    Article  Google Scholar 

  7. F. E. Fox and K. T. Herzfeld, On the forces producing the ultrasonic wind, Phys. Rev., 78 (2): 156 (1950).

    Article  MATH  Google Scholar 

  8. F. E. Borgnis, Theory of acoustic radiation pressure, Rev. Mod. Phys., 25 (3): 653 (1953).

    Article  MATH  Google Scholar 

  9. W. Cady and C. Gittings, On the measurement of power radiated from an acoustic source, J. Acoust. Soc. Am., 25 (5): 892 (1953).

    Article  Google Scholar 

  10. E. M. J. Herrey, Experimental studies on acoustic radiation pressure, J. Acoust. Soc. Am., 27 (5): 891 (1955).

    Article  Google Scholar 

  11. I. Johnsen and S. Tjötta, Eine theoretische und experimentalle Untersuchung ilber den Quartzwind [A theoretical and experimental study of the quartz wind], Acustica, 7 (l): 7 (1957).

    Google Scholar 

  12. S. Tjötta, Steady rotational flow generated by a sound beam, J. Acoust. Soc. Am., 29 (4): 455 (1957).

    Article  Google Scholar 

  13. W. L. Nyborg, Acoustic streaming due to attenuated plane waves, J. Acoust. Soc. Am., 25 (1): 68 (1953).

    Article  MathSciNet  Google Scholar 

  14. K. A. Naugol’nykh, On sonically induced streaming, Dokl. Akad. Nauk SSSR, 123 (6): 1003 (1958).

    Google Scholar 

  15. A. I. Ivanovskii, Theoretical and Experimental Investigation of Sonically Induced Streaming, Gidrometeoizdat (1959).

    Google Scholar 

  16. P. J. Westervelt, The mean pressure and velocity in a plane acoustic wave in a gas, J. Acoust. Soc. Am., 22 (3): 319 (1950).

    Article  MathSciNet  Google Scholar 

  17. R. D. Fay, Plane sound waves of finite amplitude, J. Acoust. Soc. Am., 3 (2): 222 (1931).

    Article  Google Scholar 

  18. Rayleigh (J. W. Strutt), The Theory of Sound, Vol. 2, McGraw-Hill, New York (1948), p. 352.

    Google Scholar 

  19. K. Schuster and W. Matz, Ober stationare Strömungen in Kundtsche Rohr [On stationary streaming in Kundt tubes], Akust. Z., 5; 349 (1940).

    Google Scholar 

  20. Yu. Ya. Borisov and Yu. G. Statnikov, Flow currents generated in an acoustic standing wave, Akust. Zh., 11 (1): 35 (1965).

    Google Scholar 

  21. L. D. Landau and E. M. Lifshits, Mechanics of Continuous Media, Gostekhizdat (1954).

    Google Scholar 

  22. H. Schlichting, Berechnung ebener periodischer Grenzschichts Strömungen [Calculation of plane periodic boundary-layer streaming], Phys. Z., 33 (8): 327 (1932).

    Google Scholar 

  23. H. Schlichting, Grenzschicht-Theorie [Boundary-Layer Theory], Brann, Karlsruhe (1951).

    Google Scholar 

  24. W. L. Nyborg, Acoustic streaming near a boundary, J. Acoust. Soc. Am., 30 (4): 329 (1958).

    Article  MathSciNet  Google Scholar 

  25. J. M. Andres and U. Ingard, Acoustic streaming at high Reynolds numbers, J. Acoust. Soc. Am., 25 (5): 928 (1953).

    Article  Google Scholar 

  26. J. M. Andres and U. Ingard, Acoustic streaming at low Reynolds numbers, J. Acoust. Soc. Am., 25 (5): 932 (1953).

    Article  Google Scholar 

  27. J. Holzmark, I. Johnsen, T. Sikkeland, and S. Skavlem, Boundary layer flow near a cylindrical obstacle in an oscillating incompressible fluid, J. Acoust. Soc. Am., 26 (1): 26 (1954).

    Article  Google Scholar 

  28. W. P. Raney, J. C. Corelli, and P. J. Westervelt, Acoustic streaming in the vicinity of a cylinder, J. Acoust. Soc. Am., 26 (6): 1006 (1954).

    Article  Google Scholar 

  29. C. M. A. Lane, Acoustical streaming in the vicinity of a sphere, J. Acoust. Soc. Am., 27 (6): 1123 (1953).

    Google Scholar 

  30. M. Carriere, Analyse ultramicroscopique des vibrations aeriennes [Ultramicroscopic analysis of air vibrations], J. Phys. Radium, 10 (5): 198 (1929).

    Article  MATH  Google Scholar 

  31. P. J. Westervelt, Acoustic streaming near a small obstacle, J. Acoust. Soc. Am., 25 (6): 1123 (1953).

    Article  MathSciNet  Google Scholar 

  32. S. Skavlem and S. Tjötta, Steady rotational flow of an incompressible viscous fluid enclosed between two coaxial cylinders, J. Acoust. Soc. Am., 27 (1): 26 (1955).

    Article  Google Scholar 

  33. Yu. G. Statnikov, Microstreaming about a gas bubble in a liquid, Akust. Zh., 13 (3): 464 (1967).

    Google Scholar 

  34. E. V. Romanenko, Experimental investigation of acoustic streaming in water, Akust. Zh., 6 (1): 92 (1960).

    Google Scholar 

  35. E. G. Richardson, Acoustic experiment relating to the coefficients of viscosity of various liquids, Proc. Roy. Soc., A226 (1164): 16 (1954).

    Article  Google Scholar 

  36. Yu. Ya. Borisov and Yu. G. Statnikov, Measurement of boundary layer thickness in the presence of a sound field, Akust. Zh., 12 (3): 372 (1966).

    Google Scholar 

  37. G: Spengler, Über den Einfluss des “Quartzwindes” auf Ultraschalleistungmessungen [Influence of the “quartz wind” on ultrasonic power measurements], Naturwissenschaften, 41: 59 (1954).

    Article  Google Scholar 

  38. E. N. Andrade, On the circulation caused by the vibration of air in a tube, Proc. Roy. Soc., A134 (824): 445 (1931).

    Article  Google Scholar 

  39. A. M. Gabrial and E. G. Richardson, A study of acoustic streaming in liquids over a wide frequency range, Acustica, 5 (1): 28 (1955).

    Google Scholar 

  40. C. L. Damer and E. N. Laid, “Quartz wind” formation time, J. Acoust. Soc. Am., 26 (1): 104 (1954).

    Google Scholar 

  41. L. K. Zarembo and V. V. Shklovskaya-Kordi, Visualization of acoustic streaming at the boundary of two immiscible liquids, Akust. Zh., 3 (4): 373 (1957).

    Google Scholar 

  42. J. D. West, Circulation occurring in acoustic phenomena, Proc. Phys. Soc., B64 (378): 483 (1951).

    Google Scholar 

  43. U. Ingard and S. Labate, Acoustic circulation effects and the nonlinear im- pedance of orifices, J. Acoust. Soc. Am., 22 (2): 211 (1950).

    Article  Google Scholar 

  44. S. A. Elder, Cavitation microstreaming, J. Acoust. Soc. Am., 31 (1): 54 (1959).

    Article  Google Scholar 

  45. J. Kolb and W. L. Nyborg, Small-scale acoustic streaming in liquids, J. Acoust. Soc. Am., 28 (6): 1237 (1956).

    Article  Google Scholar 

  46. W. L. Nybcrg, R. K. Gould, F. J. Jackson, and C. E. Adams, Sonically induced microstreaming applied to a surface reaction, J. Acoust. Soc. Am., 31 (6): 706 (1959).

    Article  Google Scholar 

  47. I. M. Faikin and I. E. Él’piner, Onset of emulsification processes due to microstreaming induced by an ultrasonic field, Akust. Zh., 11 (1): 126 (1965).

    Google Scholar 

  48. I. E. É1’piner, Recent advances in ultrasonic biophysics, Usp. Sovrem. Biol., 61 (2): 212 (1966).

    Google Scholar 

  49. I. E. Él’piner, I. M. Faikin, and O. K. Basurmanova, Intracellular micro-streaming induced by ultrasonic waves, Biofizika, 10 (5): 805 (1965).

    Google Scholar 

  50. M. I. Gol’din, I. M. Faikin, and I.E. Él’piner, Microstreaming induced by ultrasonic waves in plant cells containing tobacco mosaic virus injections, Dokl. Akad. Nauk SSSR, 166 (5): 1221 (1966).

    Google Scholar 

  51. F. Y. Jackson and W. L. Nyborg, Microscopic eddying neat a vibrating ultrasonic tool tip, J. Appl. Phys., 30 (6): 949 (1959).

    Article  Google Scholar 

  52. F. Y. Jackson, Sonically induced microstreaming near a plane boundary, II, Acoustic streaming field, J. Acoust. Soc. Am., 32 (11): 1387 (1960).

    Article  Google Scholar 

  53. T. M. Dauphinee, Acoustic air pump, Rev. Sci. Instr., 28 (6): 452 (1957).

    Article  Google Scholar 

  54. H. Medwin, Acoustic streaming experiment in gases, J. A coust. Soc. Am., 26 (3): 332 (1954).

    Article  Google Scholar 

  55. E. W. Samuel and R. S. Shankland, The sound field of a Straubel X-cut crystal, J. Acoust. Soc. Am., 22 (5): 589 (1950).

    Article  Google Scholar 

  56. S. M. Karim and L. Rosenheed, Second coefficient of viscosity of liquids and gases, Rev. Mod. Phys., 24 (2): 108 (1952).

    Article  Google Scholar 

  57. J. E. Piercy and J. Lamb, Acoustic streaming in liquids, Proc. Roy. Soc., A226 (1164): 43 (1954).

    Article  MathSciNet  Google Scholar 

  58. D. N. Hall and J. Lamb, Measurement of ultrasonic absorption in liquids by the observation of acoustic streaming, Proc. Phys. Soc., 75: 354 (1959).

    Article  Google Scholar 

  59. S. M. Karim, Second viscosity coefficient of liquids, J. Acoust. Sod. Am., 25 (5): 997 (1953).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zarembo, L.K. (1971). Acoustic Streaming. In: Rozenberg, L.D. (eds) High-Intensity Ultrasonic Fields. Ultrasonic Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5408-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5408-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5410-0

  • Online ISBN: 978-1-4757-5408-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics