Advertisement

Acoustic Radiation Pressure

  • Z. A. Gol’dberg
Part of the Ultrasonic Technology book series (ULTE)

Abstract

The acoustic radiation pressure is customarily interpreted as the time-average pressure acting on an object in a sound field. The object in this case is conceived in the broadest sense, i.e., a body in a sound field, an interface between two media, or a single particle of a medium set against the other particles of the same medium.

Keywords

Standing Wave Sound Wave Radiation Pressure Momentum Flux Radiation Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rayleigh (J. W. Strutt), The Theory of Sound, Vol. 2, New York (1965).Google Scholar
  2. 2.
    Lord Rayleigh, On the momentum and pressure of gaseous vibrations, and on the connection with the virial theorem, Phil. Mag., 10: 364 (1905);zbMATHGoogle Scholar
  3. Lord Rayleigh, On the momentum and pressure of gaseous vibrations, and on the connection with the virial theorem, Phil. Mag., 3: 336 (1902).Google Scholar
  4. 3.
    V. Al’tberg, On the pressure of sound waves and on the absolute measurement of sound intensity, Zh. Russk. Fiz.-Khim. Obshch., Chast’, Fiz., 34 (4): 459 (1903);Google Scholar
  5. V. Al’tberg, On the pressure of sound waves and on the absolute measurement of sound intensity, Ann. Phys., 11: 405 (1903).CrossRefGoogle Scholar
  6. 4.
    V. D. Zernov, Comparison of methods for the absolute measurement of sound intensity, Zh. Russk. Fiz.-Khim. Obshch., Chast’ Fiz., 38 (7): 410 (1906);Google Scholar
  7. V. D. Zernov, Comparison of methods for the absolute measurement of sound intensity, Ann. Phys., 21: 131 (1906).CrossRefGoogle Scholar
  8. 5.
    R. Lucas, La pression de radiation en physique et particulierement en acoustique [Radiation pressure in physics and in particular in acoustics], Fifth Internat. Congr. Acoustics, Liège, Vol. 2, p. 163 (1965).Google Scholar
  9. 6.
    W. E. Smith, Radiation pressure forces in terms of impedance, admittance, and scattering matrices, J. Acoust. Soc. Am., 37 (5): 932 (1965).CrossRefGoogle Scholar
  10. 7.
    A. S. Denisov, D. B. Dianov, A. A. Podol’skii, and V. I. Turubarov, Drift of an aerosol particle in a sound wave distorted by the presence of the second harmonic, Akust. Zh., 12 (1): 31 (1966).Google Scholar
  11. 8.
    L. Bergmann, Ultraschall und seine Anwendung in Wissenschaft und Technik, Edwards, Ann Arbor, Michigan.Google Scholar
  12. 9.
    E. P. Mednikov, Acoustic Coagulation and Precipitation of Aerosols, Izd. AN SSSR (1963).Google Scholar
  13. 10.
    G. Hertz and H. Mende, Der Schallstrahlungsdruck in Flüssigkeiten [Acoustic radiation pressure in fluids], Z. Phys., 114: 354 (1939).CrossRefGoogle Scholar
  14. 11.
    E. Skudzryk, Die Grundlagen der Akustik [Fundamentals of Acoustics], Vienna (1954).Google Scholar
  15. 12.
    I. Matauschek, Einfuhrung in die Ultraschalltechnik [Introduction to Ultrasonic Engineering], Berlin (1961).Google Scholar
  16. 13.
    L. D. Rozenberg, V. F. Kazantsev, L. O. Makarov, and D. F. Yakhimovich, Ultrasonic Cutting, Izd. AN SSSR (1962).Google Scholar
  17. 14.
    L. K. Zarembo and V. A. Krasil’nikov, Introduction to Nonlinear Acoustics ( High-Intensity Sonic and Ultrasonic Waves ), Izd. “Nauka” (1966).Google Scholar
  18. 15.
    L. D. Landau and E. M. Lifshits, Mechanics of Continuous Media, Moscow (1954).Google Scholar
  19. 16.
    Z. Gol’dberg, Second-approximation acoustic equations and the propagation of finite-amplitude plane waves, Akust. Zh., 2 (3): 325 (1956).Google Scholar
  20. 17.
    D. T. Blackstock, Thermoviscous attenuation of plane, periodic, finite-amplitude sound waves, J. Acoust. Soc. Am., 36 (3): 534 (1964).CrossRefGoogle Scholar
  21. 18.
    L. Brillouin, Sur les tensions de radiation [On the radiation pressure forces], Ann. Phys., 4 (10): 528 (1925).zbMATHGoogle Scholar
  22. 19.
    L. Brillouin, Les pressions de radiation et leur aspect tensorial [Radiation pressures and their tensorial aspect], J. Phys. Radium, 17 (5): 379 (1956).MathSciNetCrossRefGoogle Scholar
  23. 20.
    F. E. Borgnis, Acoustic radiation pressure of plane compressional waves, Rev. Mod. Phys., 25 (3): 653 (1953).zbMATHCrossRefGoogle Scholar
  24. 21.
    F. E. Borgnis, Über die Bewegungsgleichung und den Impulssatz in viskosen und kompressiblen Medien [Equation of motion and momentum principle in viscous and compressible media], Acustica, 4 (4): 407 (1954).MathSciNetGoogle Scholar
  25. 22.
    O.K. Mawardi, Sur la pression de radiation en acoustique [On the acoustic radiation pressure], J. Phys. Radium, 17 (5): 384 (1956).MathSciNetCrossRefGoogle Scholar
  26. 23.
    J. Mercier, De la pression de radiation dans les fluides [Radiation pressure in fluids], J. Phys. Radium, 17 (5): 401 (1956).CrossRefGoogle Scholar
  27. 24.
    C. Schaefer, Zur Theorie des Schallstrahlungsdruckes [On the theory of the acoustic radiation pressure], Ann. Phys. (5), 35 (6): 473 (1939).zbMATHCrossRefGoogle Scholar
  28. 25.
    F. Bopp, Energetische Betrachtungen zum Schallstrahlungsdruck [Energy analysis of the acoustic radiation pressure], Ann. Phys., (5), 38: 495 (1940).MathSciNetCrossRefGoogle Scholar
  29. 26.
    R. T. Beyer, Radiation pressure in a sound wave, Am. J. Phys., 18(1):25(1950).Google Scholar
  30. 27.
    G. Richter, Zur Frage der Schallstrahlungsdruckes [On the acoustic radiation pressure], Z. Phys., 115: 97 (1940).CrossRefGoogle Scholar
  31. 28.
    E. Karaskiewicz, Radiation pressure of an acoustical plane wave, Bull. Soc. Amis Sci. Lettres de Poznan Ser. B, 14: 73 (1958);Google Scholar
  32. E. Karaskiewicz, Radiation pressure of an acoustical plane wave, Postepy Akustyki, 8 (1): 79 (1957).Google Scholar
  33. 29.
    P. Biquard, Les ondes ultras-sonores (II) [Ultrasonic waves (II)], Rev. Acoust., 1: 315 (1932).Google Scholar
  34. 30.
    P. Biquard, Les ondes ultras-sonores (II), [Ultrasonic Waves (II)] Rev. Acoust., 1: 315 (1932).Google Scholar
  35. 31.
    F. E. Borgnis, Acoustic radiation pressure of plane-compressional waves at oblique incidence, J. Acoust. Soc. Am., 24 (5): 468 (1952).CrossRefGoogle Scholar
  36. 32.
    F. E. Borgnis, On the forces due to acoustic wave motion in a viscous medium and their use in the measurement of acoustic intensity, J. Acoust. Soc. Am., 25 (3): 546 (1953).CrossRefGoogle Scholar
  37. 33.
    A. A. Éikhenval’d, Large-amplitude sound waves, Usp. Fiz. Nauk, 14 (5): 552 (1934).Google Scholar
  38. 34.
    P. J. Westervelt, The mean pressure and velocity in a plane acoustic wave in a gas, J. Acoust. Soc. Am., 22 (3): 319 (1950).MathSciNetCrossRefGoogle Scholar
  39. 35.
    R. Lucas, Les tensions de radiation en acoustique [Acoustic radiation pressure forces], J. Phys. Radium, 17 (5): 395–399 (1956).MathSciNetCrossRefGoogle Scholar
  40. 36.
    D. T. Blackstock, Normal reflection of finite amplitude plane waves from a rigid wall, Proc. Third Internat. Congr. Acoustics, Stuttgart, Vol. 1, p. 309 (1959).Google Scholar
  41. 37.
    J. Mendousse, Acoustic radiation pressure, Compt. Rend., 208: 1977 (1938).Google Scholar
  42. 38.
    M. Mathiot, Étude experimentale du terme isotrope de la tension de radiation acoustique dans un gaz [Experimental study of the isotropic term in the acoustic radiation pressure in a gas], Compt. Rend., 255 (1): 64 (1962).Google Scholar
  43. 39.
    M. Mathiot, Étude experimentale du terme isotrope de la tension de radiation acoustique dans un gaz [Experimental study of the isotropic term in the acoustic radiation pressure in a gas], Ann. Phys., 1: 235 (1966).Google Scholar
  44. 40.
    R. V. Dombrovskii, Report to the Colloquium at the Acoustics Institute of the Academy of Sciences of the USSR (1966).Google Scholar
  45. 41.
    C. Florisson, Procédé d’étalonnage d’une sonde acoustique au moyen du pendule absolu de pression de radiation [Procedure for the absolute calibration of an acoustic probe by means of a pendulum from the radiation pressure], J. Phys. Radium, 17: 411 (1956).CrossRefGoogle Scholar
  46. 42.
    W. G. Cady and C. E. Gittings, On the measurement of power radiated from an acoustic source, J. Acoust. Soc. Am., 25 (5): 892 (1953).CrossRefGoogle Scholar
  47. 43.
    E. M. J. Herrey, Experimental studies on acoustic radiation pressure, J. Acoust. Soc. Am., 2’7(5): 891 (1955).Google Scholar
  48. 44.
    V. Gavreau, Pression de radiation sonore d’apres la théorie cinétique des gaz [Acoustic radiation pressure in terms of the kinetic theory of gases], J. Phys. Radium, 17 (10): 899 (1956).CrossRefGoogle Scholar
  49. 45.
    E. J. Post, Radiation pressure and dispersion, J. Acoust. Soc. Am., 25 (1): 55 (1953).MathSciNetGoogle Scholar
  50. 46.
    J. S. Mendousse, On the theory of acoustic radiation pressure, Proc. Am. Acad. Arts and Sci., 78: 148 (1950).MathSciNetCrossRefGoogle Scholar
  51. 47.
    Z. A. Gol’dberg and K. A. Naugol’nykh, The Rayleigh sound pressure, Akust. Zh., 9 (1): 28 (1963).Google Scholar
  52. 48.
    R. Lucas, Sur les tensions de radiation des ondes acoustices [Radiation pressure forces of sound waves], Nuovo Cimento (9), 7 (2): 236 (1950).Google Scholar
  53. 49.
    R. Lucas, Sur les pressions des radiation des ondes spheriques [Radiation pressure of spherical waves], Compt. Rend., 230: 2004 (1950).Google Scholar
  54. 50.
    M. J. Seegal, Acoustic radiation pressure bearing, J. Acoust. Soc. Am., 33 (5): 566 (1961).CrossRefGoogle Scholar
  55. 51.
    E. Fubini-Chiron, Anomalie nella propagazione di onde acustiche di grande ampiezza [Anomalies in the propagation of large-amplitude sound waves], Alta Frequenza, 4 (5): 530 (1935).Google Scholar
  56. 52.
    N. N. Andreev, Ober die Energieausdrucke in der Akustik [Energy expressions in acoustics], J. Phys. (USSR), 2: 305 (1940).Google Scholar
  57. 53.
    A. Schoch, Zur Frage nach dem Impuls einer Schallwelle [On the momentum of sound wave], Z. Naturforsch., 7a:2’73 (1952).Google Scholar
  58. 54.
    J. Markham, Second order acoustic field; relation between energy and intensity, Phys. Rev., 89: 972 (1953).zbMATHCrossRefGoogle Scholar
  59. 55.
    N. N. Andreev, Certain second-order quantities in acoustics, Akust. Zh., 1 (1): 3 (1955).Google Scholar
  60. 56.
    N. N. Andreev, Einige Fragen der nichtlinearen Akustik [Some problems in nonlinear acoustics], Proc. Third Internat. Congr. Acoustics, Stuttgart (1959), Vol. 1, p. 304 (1961).Google Scholar
  61. 57.
    J. Fazanowicz, Ped i energia ciagu falowego, Postepy Akustyki, 8 (1): 181 (1957).Google Scholar
  62. 58.
    J. Markham, Second order acoustic field; energy relations, Phys. Rev., 86 (5): 712 (1952).MathSciNetzbMATHCrossRefGoogle Scholar
  63. 59.
    A. Schoch, Remarks on the concept of acoustic energy, Acustica, 3 (3): 181 (1953).Google Scholar
  64. 60.
    Z. Gol’dberg, On momentum flux in sound waves, Preprints Fifth Internat. Congr. Acoust., Liège, Vol. K44 (1965).Google Scholar
  65. 61.
    L. D. Rozenberg and L. O. Makarov, Causes of the swelling of the surface of a liquid under the influence of ultrasound, Dokl. Akad. Nauk SSSR, 114 (2): 275 (1957).Google Scholar
  66. 62.
    A. N. Golenkov and I. G. Rusakov, Optimum Rayleigh disks for the measurement of sound intensity in water, Trudy Inst. Komiteta Standartov, Mer i Izmeritel’nykh Priborov pri Sovete Ministrov SSSR, No. 45 (105), p. 63 (1960).Google Scholar
  67. 63.
    J. A. Newell, A radiation pressure balance for the absolute measurement of ultrasonic power, Phys. Med. Biol., 8 (2): 215 (1963).MathSciNetCrossRefGoogle Scholar
  68. 64.
    J. Cabrielli and G. Jenretti, Torsion balance for radiation pressure measurements, Acustica, 13 (3): 175 (1963).Google Scholar
  69. 65.
    A. T. Kosolapov, Application of King’s formula for measurement of ultrasonic intensity, Uch. Zap. Mordovsk. Univ., Ser. Fiz. Nauk (Saransk), No. 36, p. 112 (1964).Google Scholar
  70. 66.
    G. Kossoff, Balance technique for the measurement of very low ultrasonic power outputs, J. Acoust. Soc. Am., 38 (8): 880 (1965).CrossRefGoogle Scholar
  71. 67.
    O. E. Tsok, Balance for the measurement of ultrasonic intensity, Izmeritel’, Tekh., 7: 42 (1965).Google Scholar
  72. 68.
    W. Dörr, Anziehende und abstossende Kräfte zwischen Kugeln im Schallfeld [Attractive and repulsive forces between spheres in a sound field], Acustica, 5 (3): 163 (1955).Google Scholar
  73. 69.
    V. F. Kazantsev, Motion of gas bubbles in a liquid under the action of Bjerknes forces arising in a sound field, Dokl. Akad. Nauk SSSR, 129 (1): 64 (1959).Google Scholar
  74. 70.
    T. F. W. Embleton, Mutual interaction between two spheres in a plane sound field, J. Acoust, Soc. Am., 34 (11): 1714 (1962).MathSciNetCrossRefGoogle Scholar
  75. 71.
    V. I. Timoshenko, Aggregation of aerosol particles in a sound field under the conditions of Stokes law flow, Akust. Zh., 11 (2): 222 (1965).Google Scholar
  76. 72.
    N. L. Shirokova and O. K. Eknadiosyants, Interaction of aerosol particles in an acoustic field, Akust. Zh., 11 (3): 409 (1965).Google Scholar
  77. 73.
    N. A. Fuks, Mechanics of Aerosols, Izd. AN SSSR (1955).Google Scholar
  78. 74.
    L. V. King, On the acoustic radiation pressure on spheres, Proc. Roy. Soc., A147 (861): 212 (1934).CrossRefGoogle Scholar
  79. 75.
    L. V. King, On the acoustic radiation pressure on circular discs; inertia and diffraction corrections, Proc. Roy. Soc., A153 (878) (1935).Google Scholar
  80. 76.
    P. J. Westervelt, The theory of steady forces caused by sound waves, J. Acoust. Soc. Am., 23 (3): 312 (1951).MathSciNetCrossRefGoogle Scholar
  81. 77.
    J. Awatani, Studies on acoustic radiation pressure: I. General considerations, J. Acoust. Soc. Am., 27 (2): 278 (1955).MathSciNetCrossRefGoogle Scholar
  82. 78.
    J. Awatani, Note on acoustic radiation pressure, J. Acoust. Soc. Am., 29 (3): 392 (1957).CrossRefGoogle Scholar
  83. 79.
    A. Johansen, Force agissant sur une sphere suspendue dans un champ sonore [Force acting on a sphere suspended in a sound field], J. Phys. Radium, 17 (5): 400 (1956).MathSciNetCrossRefGoogle Scholar
  84. 80.
    H. Olsen, H. Wergeland, and P. J. Westervelt, Acoustic radiation force, J. Acoust. Soc. Am., 30 (7): 633 (1958).MathSciNetCrossRefGoogle Scholar
  85. 81.
    L.P. Gor’kov, Forces acting on a small particle in a sound field in an ideal fluid, Dokl. Akad. Nauk SSSR, 140 (1): 88 (1961).Google Scholar
  86. 82.
    W. E. Smith, Average radiation-pressure forces produced by sound fields, Australian J. Phys., 17 (3): 389 (1964).CrossRefGoogle Scholar
  87. 83.
    P. J. Westervelt, Acoustic radiation pressure, J. Acoust. Soc. Am., 29 (1): 26 (1957).CrossRefGoogle Scholar
  88. 84.
    T. F. W. Embleton, Mean force on a sphere in a spherical sound field, J. Acoust. Soc. Am., 26 (1): 40 (1954).MathSciNetCrossRefGoogle Scholar
  89. 85.
    T. F. W. Embleton, The radiation force on a spherical obstacle in a cylindrical sound field, Can. J. Phys., 34 (3): 276 (1956).MathSciNetzbMATHGoogle Scholar
  90. 86.
    A. S. Denisov, A. A. Podol’skii, and V. I. Turubarov, Entrainment of aerosol particles in an acoustic field at Reynolds numbers R I, Akust. Zh., 11 (1): 115 (1965).Google Scholar
  91. 87.
    A. A. Podol’skii and V. I. Turubarov, Dependence of the degree of slip past aerosol particles on the amplitude of the sound field at Reynolds numbers 0.5 R:5.1, Trudy LIAR, No. 45, p. 60 (1965).Google Scholar
  92. 88.
    A. A. Podol’skii and V. I. Turubarov, Drift of aerosol particles in a sound field under asymmetric distortion of the acoustic waveform, Kolloidn. Zh., 27 (3): 425 (1965).Google Scholar
  93. 89.
    I. N. Kanevskii, Steady forces arising in a sound field, Akust. Zh., 7 (1): 3 (1961).MathSciNetGoogle Scholar
  94. 90.
    K. Yosioka and Y. Kawasima, Acoustic radiation pressure on a compressible sphere, Acustica, 5 (3): 167 (1955).Google Scholar
  95. 91.
    K. Yosioka, Y. Kawasima, and H. Hirano, Acoustic radiation pressure on bubbles and their logarithmic decrement, Acustica, 5 (3): 173 (1955).Google Scholar
  96. 92.
    H. Olsen, W. Romberg, and H. Wegeland, Radiation force on bodies in a sound field, J. Acoust. Soc. Am., 30 (1): 69 (1958).CrossRefGoogle Scholar
  97. 93.
    J. Awatani, Studies on acoustic radiation pressure: II. Radiation pressure on a circular disk, J. Acoust. Soc. Am., 27 (2): 282 (1955).MathSciNetCrossRefGoogle Scholar
  98. 94.
    H. H. Jensen and K. Saermark, On the theory of the Rayleigh disk and the sound pressure radiometer, Acustica, 8 (2): 79 (1958).Google Scholar
  99. 95.
    K. Budal, E. Hoy, and H. Olsen, Measurements of acoustic radiation force, J. Acoust. Soc. Am., 31 (11): 1536 (1959).CrossRefGoogle Scholar
  100. 96.
    Lord Rayleigh, On an instrument capable of measuring the intensity of aerial vibrations, Phil. Mag., 14: 186 (1882).Google Scholar
  101. 97.
    J. Hartmann and T. Mortensen, A comparison of the Rayleigh disk and the acoustic radiometer methods for the measurement of sound-wave energy, Phil. Mag., 39 (292): 377 (1948).Google Scholar
  102. 98.
    W. West, The accuracy of measurements by Rayleigh disk, Proc. Phys. Soc., B62 (355): 437 (1949).Google Scholar
  103. 99.
    A. Kösters, Über Schallschnellemessungen in Flüssigkeiten mit der Rayleightschen Scheibe [Sound velocity measurements in fluids with the Rayleigh disk], Akust. Beih., 3:AB171 (1952).Google Scholar
  104. 100.
    W. König, Hydrodynamisch-akustische Untersuchungen [Hydrodynamic-acoustical investigations] (III), Ann. Phys., 43: 43 (1891).CrossRefGoogle Scholar
  105. 101.
    V. King, On the theory of the inertia and diffraction corrections for the Rayleigh disc, Proc. Roy. Soc., A153: 878 (1935).Google Scholar
  106. 102.
    A. B. Wood, Theory of the Rayleigh disc, Proc. Phys. Soc., 47 (262): 779 (1935).CrossRefGoogle Scholar
  107. 103.
    J. Awatani, Anomalous behavior of Rayleigh disk for high-frequency waves, J. Acoust. Soc. Am., 28 (2): 297 (1956).CrossRefGoogle Scholar
  108. 104.
    N. Kawai, Sci. Rep. Tohoku Univ., Ser. 1, 35: 210 (1951).Google Scholar
  109. 105.
    G. Maidanic, Torques due to acoustical radiation pressure, J. Acoust. Soc. Am., 30 (7): 620 (1958).CrossRefGoogle Scholar
  110. 106.
    C. G. Rasmussen, An experimental investigation of the diffraction correction for a Rayleigh disc, Acustica, 14 (3): 148 (1964).Google Scholar
  111. 107.
    M. Kornfel’d and V. I. Triers, Swelling of the surface of a liquid under the influence of ultrasound, Zh. Tekh. Fix., 26 (12): 2778. (1956).Google Scholar
  112. 108.
    V. V. Bogorodskii, E. D. Pigulevskii, and V. G. Prokhorov, Method for the Measurement of Ultrasonic Intensity in Liquids, USSR Patent, Class 42d, 1/01, No. 120927 (1959).Google Scholar
  113. 109.
    K. Negiski and O. Nomoro, Experiment on acoustic radiation pressure, J. Acoust. Soc. Japan, 15 (4): 224 (1959).Google Scholar
  114. 110.
    I. T. Sokolov, Application of the mathematical theory of King to radiometric measurements of sound pressures in a liquid, Zh. Tekh. Fiz., 15 (4/5): 223 (1945).Google Scholar
  115. 111.
    G. P. Motulevich, I. L. Fabelinskii, and L. N. Shteingauz, An absolute acoustic microradiometer, Dokï. Akad. Nauk SSSR, 70 (1): 29 (1950).Google Scholar
  116. 112.
    K. Yosioka, Y. Kawasima, and H. Hirano, On the absolute measurement of ultrasound intensity by radiation force on a solid sphere, Mem. Inst. Sci. and Indust. Res. Osaka Univ., 21: 13 (1964).Google Scholar
  117. 113.
    A. B. Coppens, R. T. Beyer, M. B. Seiden, J. Donohue, F. Guepin, R. H. Holdson, and C. Townsend, Parameter of nonlinearity in fluids, J. Acoust. Soc. Am., 38 (5): 797 (1965).CrossRefGoogle Scholar
  118. 114.
    J. E. Piercy and J. Lamb, Acoustic streaming in liquids, Proc. Roy. Soc., A226 (1164): 43 (1954).MathSciNetCrossRefGoogle Scholar
  119. 115.
    D. N. Hall and J. Lamb, Measurement of ultrasonic absorption in liquids by the observations of acoustic streaming, Proc. Phys. Soc., 73 (471): 354 (1959).zbMATHCrossRefGoogle Scholar
  120. 116.
    K. P. Nikonov and B. B. Kudryavtsev, Measurement of ultrasonic absorption in a liquid by the streaming method, in: Application of Ultrasonics to the Investigation of Matter, No. 16, Izd. MOPI (1962), p. 183.Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • Z. A. Gol’dberg

There are no affiliations available

Personalised recommendations