Skip to main content

Supply Voltage Limits in Standard CMOS Technologies

  • Chapter

Abstract

Various undesirable effects can take place in a low-voltage transistor if one of its terminals is pushed beyond the voltage limit set by the technology. The scope of this chapter is the investigation and modelling of these effects. A particular interest is first focused on the degradation of the device characteristics resulting from channel hot-carrier effects. Then, destructive mechanisms such as, avalanche breakdown. surface breakdown, snapback breakdown, punchthrough breakdown and gate oxide breakdown are analysed. These theoretical considerations are the basics required to implement the design of reliable high-voltage devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. A. El-Mancy, D. M. Caughey, “Modelling weak avalanche multiplication currents in IGFETS and SOS transistors for CAD”, IEEE IEDM-75, Dig. Tech. Papers,pp.31–34

    Google Scholar 

  2. P. E. Cottrell, R. R. Troutman, “Hot-electron Emission in N-channel IGFET’s”, IEEE Trans. Elec. Dev., Vol. ED-26, NO. 4, April 1979, pp. 520–533

    Article  Google Scholar 

  3. C. Hu, S. C. Tam, P. K. Ko, T. Y. Chan, K. W. Tenill, “Hot-electron-Induced MOSFET Degradation—Model, Monitor, and improvement”, IEEE Journal of Solid-State circuits., Vol. SC-20, NO. 1, February 1985, pp. 295–305

    Google Scholar 

  4. C. Hu, “Hot-electron Effects in MOSFET’s”, IEEE IEDM-83,pp.176–181

    Google Scholar 

  5. C. Hu, “Hot Carrier Effects”, in Advanced MOS Device Physics (N. G. Einspruch and G. Gildenblat, eds.), VLSI Electronics Vol. 18, pp.119–157, Academic Press Inc., New York, 1989

    Google Scholar 

  6. T. Y. Chan, P. K. Ko, C. Hu, “A Simple Method to characterize substrate current in MOSFET’s”, IEEE Trans. Elec. Dev. Lett., EDL-5(12), pp. 505–507 (1984)

    Google Scholar 

  7. T. C. Ong, P. K. Ko, C. Hu, “Hot-Carrier Current Modelling and Device Degradation in Surface-Channel p-MOSFET’s”, IEEE Trans. Elec. Dev., Vol. ED-37, NO. 7, July 1990, pp. 1658–1666

    Article  Google Scholar 

  8. E. Takeda, H. Kume, T. Toyabe, S. Asai “Submicrometer MOSFET Structure minimizing hot-carrier generation”, IEEE Trans. Elec. Dev.,Vol. ED-29, 611(1982)

    Google Scholar 

  9. S. Tam, P. K. Ko, C. Hu “Lucky-Electron Model of Channel Hot-Electron Injection in MOSFET’ s”, IEEE Trans. Elec. Dev., Vol. ED-31, NO. 9, September 1984, pp. 1116–1125

    Google Scholar 

  10. F. C. Hsu, S. Tam, “Relationship Between MOSFET Degradation and Hot-ElectronInduced Interface-State Generation”, IEEE Trans. Elec. Dev. Lett., EDL-5, NO. 2, February 1984, pp. 50–52

    Article  Google Scholar 

  11. T. H. Ning, H. N. Yu, “Optically Induced Injection Of Hot Electrons into SiO2”, J. Appl. Phys., Vol. 45, pp. 5373, 1974

    Google Scholar 

  12. K. R. Hofmann, C. Werner, W. Weber, G. Dorda, “Hot-Electron and Hole-Emission Effects in Short n-Channel MOSFET’s”, IEEE Trans. Elec. Dey., Vol. ED-32, NO. 3, March 1985, pp. 691–699

    Article  Google Scholar 

  13. E. Takeda, N. Susuki, “An Empirical Model for Device Degradation Due to Hot-Carrier Injection”, IEEE Trans. Elec. Dey. Lett., EDL-4, NO. 4, April 1983, pp. 111–113

    Google Scholar 

  14. P. Heremans, H. E. Maes, N. Saks, “Evaluation of Hot Carrier Degradation of N-Channel MOSFET’s with the Charge Pumping Technique”, IEEE Trans. Elec. Dev. Leu., EDL-7, NO. 7, July 1986, pp. 428–430

    Google Scholar 

  15. N. S. Saks, P. L. Heremans, L. V. D. Hove, H. E. Maes, R. F. De Keersmaecker, G. J. Declerck, “Observation of Hot-Hole Injection in NMOS Transistors Using a Modified Floating-Gate Technique”, IEEE Trans. Elec. Dey., Vol. ED-33, NO. 10, October 1986, pp. 1529–1533

    Article  Google Scholar 

  16. B. S. Doyle, M. Bourcerie, C. Bergonzoni, R. Benecchi, A. Bravis, K. R. Mistry, A. Boudou “The Generation and Characterisation of Electron and Hole Traps Created by Hole Injection During Low Gate Voltage Hot-Carrier Stressing of n-MOS Transistors”, IEEE Trans. Elec. Dev., Vol. ED-37, NO. 8, August 1990, pp. 1869–1876

    Article  Google Scholar 

  17. R. Bellens, P. Heremans, G. Groesneken, H. E. Maes, “Hot-carrier Effects in n-Channel MOS Transistors Under Alternating Stress Condidtions”, IEEE Trans. Elec. Dev. Lett., EDL-9, NO. 5, May 1988, pp. 232–234

    Article  Google Scholar 

  18. T. Tsuchiya “Trapped-Electron and Generated Interface-Trap Effects in Hot-ElectronInduced MOSFET Degradation” IEEE Trans. Elec. Dev., Vol. ED-34, NO. 11, November 1987, pp. 2291–2296

    Article  Google Scholar 

  19. B. S. Doyle, M. Bourcerie, J. C. Marchetaux, A. Boudou “Interface State Creation and Charge Trapping in the Medium-to-High Gate Voltage Range (Vd/2 z V, Vd) During Hot-Carrier Stressing of n-MOS Transistors”, IEEE Trans. Elec. Dey., Vol. ED-37, NO. 3, March 1990, pp. 744–754

    Article  Google Scholar 

  20. K. Mistry, B. Doyle, “A Model for AC Hot-Carrier Degradation in n-Channel MOSFET’s”, IEEE Trans. Elec. Dey. Lett., EDL-12, NO. 9, September 1991, pp. 492–494

    Article  Google Scholar 

  21. B. J. Baliga, “Modern Power Devices”, Krieger Publishing Company, Florida, 1987

    Google Scholar 

  22. M. S. Adler, V. A. K. Temple “Semiconductor Avalanche Breakdown Design Manual”, GE Technology Marketing Operation, Schenectady, New York 1979

    Google Scholar 

  23. B. J. Baliga, S. K. Ghandhi, “Analytical Solutions for the Breakdown Voltage of Abrupt Cylindrical and Spherical Junctions”, Solid State Electronics,Vol. 19, pp. 739–744(1976)

    Google Scholar 

  24. A. S. Grove, O. Leistiko, W. W. Hooper, “Effect of Surface Fields on the Breakdown Voltage of Planar Silicon p-n Junctions” IEEE Trans. Elec. Dev., Vol. ED-14, NO. 3, March 1967, pp. 157–162

    Article  Google Scholar 

  25. F. Conti, M. Conti, “Surface Breakdown in Silicon Planar Diodes Equipped with field-plate”, Solid State Electronics,Vol. 15, pp. 93–105(1972)

    Google Scholar 

  26. F. C. Hsu, P. K. Ko, S. Tam, C. Hu, R. S Muller, “An Analytical Breakdown Model for Short-Channel MOSFET’s” IEEE Trans. Elec. Dev., Vol. ED-29, NO. 11, November 1982, pp. 1735–1740

    Google Scholar 

  27. R. R. Troutman, “VLSI Limitations from Drain-Induced Barrier Lowering” IEEE Trans. Elec. Dev., Vol. ED-26, NO. 4, April 1979, pp. 461–469

    Article  Google Scholar 

  28. S. Wolf, “The Submicron MOSFET”, in Silicon Processing for the VLSI Era, Lattice Press, California, 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ballan, H., Declercq, M. (1999). Supply Voltage Limits in Standard CMOS Technologies. In: High Voltage Devices and Circuits in Standard CMOS Technologies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5404-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5404-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5052-9

  • Online ISBN: 978-1-4757-5404-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics