Sugar alcohols

  • M. S. Billaux
  • B. Flourie
  • C. Jacquemin
  • B. Messing


Polyols are distinguished from other saccharides by the reduction of the aldehyde or ketone functions. Some polyols are present in nature, particularly in the vegetable kingdom, but as their extraction is scarcely a viable proposition, they are manufactured industrially by catalytic hydrogenation of the corresponding saccharides. The substitution in a sugar of an alcohol function instead of an aldehyde or ketone group transforms a cyclical form into a linear form, and also has the following consequences:
  • higher chemical stability

  • higher affinity for water

  • lower capacity to crystallise

  • absence of the Maillard reaction


Catalytic Hydrogenation Empty Stomach Sweet Taste Sugar Alcohol Freezing Point Depression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abril, J.R., Stull, J.W., Taylor, R.R., Angus, R.C. and Daniel, TC. (1982) Characteristics of frozen dessert sweetened with xylitol and fructose. J. Food Sci. 47, 472–475.CrossRefGoogle Scholar
  2. Armstrong, W.G. and Wells, P.J. (1987) Continuous in vivo telemetric measurement of human interproximal plaque acid production caused by dietary components. Abstract No 72, 34th ORCA Congress, Budapest.Google Scholar
  3. Bar, A. (1986) Xylitol. In: Alternative Sweeteners, eds., L.O. Nabors, and R.C. Gelardi, Marcel Dekker, New York.Google Scholar
  4. Barmes, D. and Barnaud, J. (1985) Field trials of preventive regimes in Thailand and French Polynesia. Int. Dental J. 35, 66–72.Google Scholar
  5. Beaugerie, L., Flourié, B., Franchisseur, C., Pellier, P., Dupas, H. and Rambaud, J.C. (1989) Absorption intestinale et tolérance clinique au sorbitol, maltitol, lactitol et isomalt. Gastroenterol. Clin. Biol. 13, 102 (abstr).Google Scholar
  6. Beaugerie, L., Flourié, B., Franchisseur, C., Dupas, H. and Rambaud, J.C. (1990) Etude chez l’homme sain des facteurs d’absorption du sorbitol ingéré à jeun. Gastroenterol. Clin. Biol. 14, 87 (abstr).Google Scholar
  7. Beaugerie, L., Flourié, B., Marteau, P., Pellier, P., Franchisseur, C. and Rambaud, J.C., Digestion and absorption in the human intestine of three sugar alcohols. Gastroenterology (in press).Google Scholar
  8. Birkhed, D. and Frostell, G (1978) Caries in rats fed highly or slightly hydrolysed Lycasin. Caries Res. 12, 256.CrossRefGoogle Scholar
  9. Birkhed, D., Edwardsson, S. and Svensäter, G. (1980) Frequent sorbitol consumption and dental caries, a longitudinal, clinical and bacteriological study, Abstract No 93, NOF Congress, Esbo, Finland.Google Scholar
  10. Booy, C.J. (1987) Lactitol `A new food ingredient’. Bull. Int. Dairy Fed. 212, 62–68. Caliari, R. (1983) Manuf. Confect. 63, 25–30.Google Scholar
  11. Celia, G. (1985) Malbit—Maltitol an alternative sweetener. Confect. Manuf. Mark. 22, 16–26.Google Scholar
  12. Corazza, G.R., Strocchi, A., Rossi, R., Sirola, D. and Gasbarrini, G. (1988) Sorbitol malabsorption in normal volunteers and in patients with coeliac disease. Gut 29, 44–48.CrossRefGoogle Scholar
  13. Den Uyl, C.H. (1985) Lactitol, a new reduced calorie sweetener. In: International Symposium on Polyols and Polydextrose, Paris, 1985.Google Scholar
  14. Den Uyl, C.H. (1987) Technical and commercial aspects of the use of lactitol in foods as a reduced calorie bulk sweetener. In: Developments in Sweeteners, Vol. 3, ed. T.H. Grenby, Elsevier Applied Science, London, pp. 65–81.Google Scholar
  15. Dills, W.L. (1989) Sugar alcohols as bulk sweeteners. Annu. Rev. Nutr. 9, 161–186.CrossRefGoogle Scholar
  16. Edwardsson, S., Birkhed, D. and Mesare, B. (1977) Acid production from Lycasin, maltitol, sorbitol and xylitol by some oral streptococci and lactobacilli. Acta Odont. Scand 35, 257.CrossRefGoogle Scholar
  17. Emodi, A. (1982) Polyols: chemistry and applications. In: Food Carbohydrates, eds. D. Lineback and G. Inglett, Avi, Westport, CT, pp. 49–61.Google Scholar
  18. Fabry, I. (1987) Aspects pratiques de leur fabrication. Mag. Ind. Gourmandes 108, 52–58. Friedman, T. (1978) Sorbitol in bakery products. Bakers’ Digest 52, 10–48.Google Scholar
  19. Fritz, M., Siebert, G. and Kasper, H. (1985) Dose dependence of breath hydrogen and methane in healthy volunteers after ingestion of a commercial disaccharide mixture, Palatinit. Br. J. Nutr. 54, 389–400.CrossRefGoogle Scholar
  20. Future Ingredients—Focus of ovift meeting (1988) Food Technol. 42, 60–64.Google Scholar
  21. Gehring, F., Mäkinen, K., Larmars, M. et al. (1975) Turku sugar studies X. Occurrence of polysaccharide-forming streptococci and ability of the mixed plaque microbiota to ferment various carbohydrates. Acta Odont. Scand. 33, Suppl. 70, 223.Google Scholar
  22. Gong, Chen, L. and Tsao, G. (1981) Quantitative production of xylitol from D-xylose by a high-xylitol producing yeast mutant, Candida tropicales HXP2. Biotechnal. Lett. 3, 125–130.Google Scholar
  23. Grenby, T.H., Philipps, A. and Mistry, M. (1989) Studies of the dental properties of lactitol compared with five other bulk sweeteners in vitro. Caries Res. 23, 315–319.CrossRefGoogle Scholar
  24. Grimble, G.K., Patil, D.H. and Silk, D.B.A. (1988) Assimilation of lactitol, an `unabsorbed’ disaccharide in the normal human colon. Gut 29, 1666–1671.CrossRefGoogle Scholar
  25. Guidini, M., Papillon, D., Raphalen, D., Bariou, B. and Duclos, M. (1983) Contribution à la valorisation du lactosérum—II. Synthèse du lactitol. Lait 63, 443–462.CrossRefGoogle Scholar
  26. Hamilton, I., Cobden, I., Rothwell, J. and Axon A.T.R. (1982) Intestinal permeability in coeliac disease: the response to gluten withdrawal and single dose gluten challenge. Gut 23, 202–210.CrossRefGoogle Scholar
  27. Hefti, A. (1980) Cariogenicity of topically applied sugar substitutes in rats under restricted feeding conditions. Caries Res. 14, 136.CrossRefGoogle Scholar
  28. Hyams, J.S. (1983) Sorbitol intolerance: an unappreciated cause of functional gastrointestinal complaints. Gastroenterology 84, 30–33.Google Scholar
  29. Hyvonen, L. and Koivistoinen, P. (1982) Food technological evaluation of xylitol. Adv. Food Res. 28, 373–403.CrossRefGoogle Scholar
  30. Imfeld, T. and Lutz, F. (1984) Malbit, ein Zahnfreundlichen Zuckeraustauschtoff, Swiss Food 6, 13–19.Google Scholar
  31. Isomalt et Lactitol, la deuxième génération (1988) Stratégies Gourmandes 114, 33–36.Google Scholar
  32. Izumori, K. and Tuzaki, K. (1988) Production of xylitol from D-xylulose by mycobacterium smegmatis. J. Ferment. Technol. 66, 33–36.CrossRefGoogle Scholar
  33. Jain, N.K., Rosenberg, D.B., Ulahannan, M.J., Glasser, M.J. and Pitchumoni, C.S. (1985) Sorbitol intolerance in adults. Am. J. Gastroenterol. 80, 678–681.Google Scholar
  34. Kandelman, D., Bar, A. and Hefti, A. (1988) Collaborative WHO xylitol field study in French Polynesia. Caries Res. 22, 55–62.CrossRefGoogle Scholar
  35. Kearsley, M.W. and Birch, G.G. (1978) Blood glucose profiles in man after ingestion of hydrogenated glucose syrups. IRCS Med. Sci. 6, 82 (abstr).Google Scholar
  36. Kearsley, M.W., Birch, G.G. and Lian-Loh, R.H.P. (1982) The metabolic fate of hydrogenated glucose syrups. Starch. Starke 34 279–283.CrossRefGoogle Scholar
  37. Leach, S.A. and Edgar, W.M. (1989) Remineralization in vivo of human, artificial, white-spot lesions by sugar free chewing-gum. J. Dent. Res. 68, 193.Google Scholar
  38. Leach, S.A. and Green, R.M. (1980) Effect of xylitol-supplemented diets on the progression and regression of fissure caries in the Albino rats. Caries Res. 14, 61–66.CrossRefGoogle Scholar
  39. Leach, S.A. and Green, R.M. (1981) Reversal of fissure caries in the Albino rat by sweetening agents. Caries Res. 15, 508.CrossRefGoogle Scholar
  40. Leach, S.A., Edgar, W.M. and Lee, G.T.R. (1988) Remineralization in vivo of human, artificial white-spot lesions by sugar free chewing-gum. Abstract No 647, J. Dent. Res. 67, 193.Google Scholar
  41. Le Bot, Y. (1983) Lycasin for confections. Manuf. Confect. 63, 69–74.Google Scholar
  42. Linke, H.A.B. (1987) Sweeteners and dental health: the influence of sugar substitutes on oral microorganisms. In: Developments in Sweeteners, Vol. 3, ed. T.H. Grenby, Elsevier Applied Science, London, pp. 181–188.Google Scholar
  43. Linke, H.A.B., Siebert, G. and Ziesenitz, S.C. (1989) Acid production and sugar transport of sorbitol-adapted streptococci isolated from sorbitol-conditioned dental plaque. Abstracts from the 33rd ORCA Congress. Caries Res. 23, 96.Google Scholar
  44. Linko, P., (1982) Lactose and lactitol. In: Nutritive Sweeteners, eds. G.G. Birch and J.J. Parker Elsevier Applied Science, London, pp. 109–131.Google Scholar
  45. Mäkinen, K.K. (1988) Sweeteners and prevention of dental caries with special reference to xylitol. Oral Health 78 57–66.Google Scholar
  46. Makkee, M., Kieboom, A.P.G., and Van Bekkuo, H. (1985) Production methods of n-mannitol Stärke 35, 136–141.CrossRefGoogle Scholar
  47. Nasrallah, S M. and Iber, F.L. (1969) Mannitol absorption and metabolism in man. Am. J. Med. Sci 258, 80–88.CrossRefGoogle Scholar
  48. Nilsson, U. and Jagerstad, M. (1987) Hydrolysis of lactitol, maltitol and Palatinit by human intestinal biopsies. Br. J. Nutr. 58, 199–206.CrossRefGoogle Scholar
  49. Patil, D.H., Grimble, G.K. and Silk, D.B.A. (1987) Lactitol, a new hydrogenated lactose derivative: intestinal absorption and laxative threshold in normal human subjects. Br. J. Nutr. 57, 195–199.CrossRefGoogle Scholar
  50. Pellier, P., Flourié, B., Franchisseur, C., Beaugerie, L., Dupas, H. and Rambaud, J.C. (1990) Tolérance clinique au sorbitol en situation de consommation habituelle, occasionnelle ou régulière. Gastroentérol. Clin. Biol. 14, 87 (abstr).Google Scholar
  51. Pepper, T. (1987) Sugar substitutes—Their use in chocolate and chocolate fillings. Manufact. Confect. 67 (6) 83–88.Google Scholar
  52. Pepper, T. and Olinger, P.M. (1988) Xylitol in sugar-free confections. Food Technol. 42, 98–106.Google Scholar
  53. Platt, D. and Werrin S.R. (1979) Acid production from alditols by oral streptococci. J. Dent. Res. 58, 1733.CrossRefGoogle Scholar
  54. Rapaille, A. (1988) Applications of hydrogenated product. Stärke 40, 356–359.CrossRefGoogle Scholar
  55. Rennhard, H.H. and Bianchine, J.R. (1976) Metabolism and caloric utilization of orally administered maltitol 14C in rat, dog and man. J. Agric. Food Chem. 24, 287–291.CrossRefGoogle Scholar
  56. Rosiers, C., Verwaerde, F., Dupas, H. and Bouquelet, S. (1985) New approach to the metabolism of hydrogenated starch hydrolysate: hydrolysis by the maltase/glucoamylase complex of the rat intestinal mucose. Ann. Nutr. Metab. 29, 76–82.CrossRefGoogle Scholar
  57. Rumessen, J.J. and Gudman–Hoyer, E. (1987) Malabsorption of fructose-sorbitol mixtures. Scand. J. Gastroenterol. 22 431–436.CrossRefGoogle Scholar
  58. Saunders, D.R. and Wiggins, H.S. (1981) Conservation of mannitol, lactulose, and raffinose by the human colon. Am. J. Physiol. 241, G397–G402.Google Scholar
  59. Scheinin, A. and Banoczy, J. (1985) Xylitol and caries: the collaborative WHO oral disease preventive programme in Hungary. Int. Dental J. 35, 50–57.Google Scholar
  60. Serpelloni, M. (1985) The food applications of sorbitol, mannitol and hydrogenated glucose syrups. In: International Symposium of Polyols and Polydextrose, Paris.Google Scholar
  61. Serpelloni, M. (1988a) Sugarless confectionery—using sorbitol, mannitol and Lycasin I. Confect. Prod. 54, 332–335.Google Scholar
  62. Serpelloni, M. (1988b) Sugarless confectionery—using sorbitol, mannitol and Lycasin II. Confect. Prod. 54, 418–424.Google Scholar
  63. Smits, M.T. and Arends, J. (1985) Influence of xylitol-and/or fluoride-containing tooth pastes on the remineralization of surface softened enamel defects in vivo. Caries Res. 19, 528–535.CrossRefGoogle Scholar
  64. Spengler, M., Somogyi, J.C., Pletcher, E. and Boehme, K. Tolerability, acceptance and energetic conversion of isomalt (Palatinit) in comparison with sucrose. Akt. Ernahr. 12, 210–214.Google Scholar
  65. Steinke, J., Wood, F.C., Domenge, L, Marble, A. and Renold, A.E. (1961) Evaluation of sorbitol in the diet of diabetic children at camp Diabetes, 10, 218–227.Google Scholar
  66. Stephan, R.M. (1940) Changes in hydrogen ion concentration on tooth surfaces and in carious lesions. J. Am. Dent. Ass. 27, 718–723.Google Scholar
  67. Strater, P.J. (1988) Palatinit—An energy-reduced bulk sweetener derived from saccharose. In: Low Calorie Products, eds. G.G. Birch and M.G. Lindley, Elsevier Applied Science, London, pp. 63–82.Google Scholar
  68. Strobel, S., Brydon, W.G. and Ferguson, A. (1984) Cellobiose/mannitol sugar permeability test complements biopsy histopathology in clinical investigation of the jejunum. Gut 25, 1241–1246.CrossRefGoogle Scholar
  69. Tani, Y. and Vogosuvanlert, V. (1987) Sorbitol production by a methanol yeast, Candida boidinii No 2201. J. Ferment. Technol. 65, 405–411.CrossRefGoogle Scholar
  70. Thiebaud, D., Jacot, E., Schmitz, H., Spengler, M. and Felber, J.P. (1984) Comparative study of isomalt and sucrose by means of continuous indirect calorimetry. Metabolism 33, 808–813.CrossRefGoogle Scholar
  71. Van Es, A.J.H., De Groot, L. and Vogt, J.E. (1986) Energy balances of eight volunteers fed on diets supplemented with either lactitol or saccharose. Br. J. Nutr. 56, 545–554.CrossRefGoogle Scholar
  72. Van Velthuijsen, J.A. (1979) Food additives derived from lactose: lactitol and lactitol palmitate. J. Agric. Food Chem. 27, 680–686.CrossRefGoogle Scholar
  73. Verel, A. (1989) Sucres et édulcorants dans les industries de cuisson (pâtisserie—biscuiterie) Séminaire CPCIA `Les édulcorants’, Paris.Google Scholar
  74. Vidon, N., Palma, R. and Bernier, J.J. (1983) Mouvements hydroélectrolytiques le long de l’intestin humain au cours d’une diarrhée induite par du mannitol. Gastroenterol. Clin. Biol. 7, 23–29.Google Scholar
  75. Viikari, L. (1984) Formation of levan and sorbitol from sucrose by Zymomonas mobilis. Eur. J. Appl. Microbiol. Biotechnol. 19, 252–255.Google Scholar
  76. Voirol, F. (1985) Xylitol—its caries-preventive and technical properties and food applications. In: International Symposium on Polyols and Polydextrose, Paris.Google Scholar
  77. Von Hertzen, G. and Linguist, C. (1980) Comparative evaluation of carbohydrate sweeteners. In: Carbohydrate Sweeteners in Food and Nutrition, P. Koivistoinen and L. Hyvonen, Academic Press, New York, 1980.Google Scholar
  78. Wang, Y.M. and Van Eys, J. (1981) Nutritional significance of fructose and sugar alcohols. Annu. Rev. Nutr. 1, 437–475.CrossRefGoogle Scholar
  79. Weber, W. (1988) Süssungsmittel Lycasin 80/55—Das sollten Si davon wissen. Zucker Süsswaren, Wirtsch 41, 134–135.Google Scholar
  80. Withmore, D.A. (1985) Developments in the properties and applications of Lycasin and sorbitol. Food Chem. 16 209–229.CrossRefGoogle Scholar
  81. Ziesenitz, S.C. and Siebert, G. (1987) The metabolism and utilisation of polyols and other bulk sweeteners compared with sugar. In: Developments in Sweeteners, Vol. 3, ed. T.H. Grenby, Elsevier Applied Science, London, pp. 109–149.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • M. S. Billaux
  • B. Flourie
  • C. Jacquemin
  • B. Messing

There are no affiliations available

Personalised recommendations