Skip to main content

Biogenesis of Olive Oil Aroma

  • Chapter

Abstract

Contrary to other vegetable oils, virgin olive oil is prepared from fresh olives by means of physical procedures carried out under mild conditions (chapter 2), thus resulting in a fruit juice highly priced for its delicate flavour. As described in chapter 12, the aroma of virgin olive oil is formed by a complex mixture of volatile compounds, including aldehydes, alcohols, ketones, hydrocarbons, and esters, which can be analyzed and quantified by gas chromatography—mass spectrometry (GC-MS) (Morales et al. 1995; Olías et al. 1980). Interestingly, among these compounds, C6 aldehydes (hexanal, 3(Z)-hexenal and 2(E)-hexenal), alcohols (hexanol, 3(Z)-hexenol and 2(E)-hexenol), and their acetyl esters (hexylacetate and 3(Z)-hexenyl acetate), constitute 60–80% of total volatile compounds in all of the different oils (from various Spanish and Italian cultivars) analyzed so far (Morales et al. 1995; Olías et al. 1980; Ranalli & De Mattia 1997), with 2(E)-hexenal being the most prominent component. These C6 volatile compounds, which are found in the aroma of many other vegetable products, are responsible for the so-called green notes characteristic of green leaves. It has been established for other plant species that all of those volatile compounds are formed from polyunsaturated fatty acids through a cascade of biochemical reactions collectively known as the lipoxygenase pathway. This biochemical pathway, which is induced in higher plants upon disruption of tissues, involves a series of enzymes that oxidize (lipoxygenase) and cleave (hydroperoxide lyase) polyunsaturated fatty acids to yield aldehydes, which are subsequently reduced to alcohols (alcohol dehydrogenases) and esterified to produce esters (alcohol acyltransferase).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • André, T. E. & Hou, K.-W. (1932). The presence of a lipoid oxidase in soybean. Comptes Rendus Hebdomadaires des Seances de 1 Academie des Sciences 194, 645–647.

    Google Scholar 

  • Angerosa, F., et al. (1998). Characterization of seven new hydrocarbon compounds present in the aroma of virgin olive oils. J. Agric. Food Chem. 46, 648–653.

    Article  CAS  Google Scholar 

  • Axelrod, B. (1974). Lipoxygenases. Adv Chem Ser 136, 324–348.

    Article  CAS  Google Scholar 

  • Baldoni, L., et al. (1997). A linkage genome map for olive as an important tool for marker-assisted selection. (Abstract to the Third International Symposium on Olive Growing, Chania, Greece, 1997). Olea 24, 17.

    Google Scholar 

  • Bleé, E., et al. (1993). Mechanism of reaction of fatty acid hydroperoxides with soybean peroxygenase. JBiol Chem 268, 1708–1715.

    Google Scholar 

  • Bleé, E. & Joyard, J. (1996). Envelope membranes from spinach chloroplasts are a site of metabolism of fatty acid hydroperoxides. Plant Physiol 110, 445–454.

    Google Scholar 

  • Burns, D. D., Galliard, T. & Harwood, J. L. (1980). Properties of acyl hydrolase enzymes from Phaseolus vulgaris leaves. Phytochemistry 19, 2281–2285.

    Article  CAS  Google Scholar 

  • Chan, H. W. S. (1973). Soybean lipoxygenase. Iron-containing dioxygenase. Biochim et Biophys Acta 327, 32–35.

    Article  CAS  Google Scholar 

  • Davies, D. D., et al. (1973). Aromatic alcohol dehydrogenase from potato tubers. Phytochemistry. 12, 531–536.

    Article  CAS  Google Scholar 

  • Drawert, E, et al. (1966). Biogenesis of aroma compounds in plant fruits. II. Enzymic formation of 2hexenal, hexanal and their precursors. Justus Liebgs Annals of Chemistry 694, 200–208.

    Article  CAS  Google Scholar 

  • Fellman, J. K., et al. (1993). Ester biosynthesis in “Rome” apples subjected to low-oxygen atmospheres. Postharvest Biol Technol 3, 201–214.

    Article  CAS  Google Scholar 

  • Fleming, H. P., et al. (1968). The formation of carbonyl compounds in cucumbers. JFood Sci 33, 572–576.

    Article  CAS  Google Scholar 

  • Galliard, T., et al. (1976). The enzymatic degradation of lipids resulting from physical disruption of cucumber. Phytochemistry 15, 1647–1650.

    Article  CAS  Google Scholar 

  • Galliard, T. & Chan, H. W. S. (1980). Lipoxygenases. In The Biochemistry of Plants, vol. 4, pp 131–161. Edited by P. K. Stumpf. New York: Academic Press.

    Google Scholar 

  • Galliard, T. & Phillips, D. R. (1976). The enzymic cleavage of linolic acid to C9 carbonyl fragments in extracts of cucumber (Cucumis sativus). Biochim Biophys Acta 431, 278–287.

    Article  CAS  Google Scholar 

  • Gardner, H. W. (1991). Recent investigations into the lipoxygenase pathway of plants. Biochim BiophysActa 1084, 221–239.

    Article  CAS  Google Scholar 

  • Garssen, G. J., Vliegenthart, J. E G. & Bolding, J. (1972). The origin and structures of dimeric fatty acids from the anaerobic reaction between soya-bean lipoxygenase, linoleic acid and its hydroperoxide. Biochem J 130, 435–442.

    CAS  Google Scholar 

  • Grossman, S., et al. (1972). Egg plant lipoxygenase: Isolation and partial characterization. Lipids 7, 467–473.

    Article  CAS  Google Scholar 

  • Harada, M., Ueda, Y. & Iwata, T. (1985). Purification and some properties of alcohol acetyltransferase from banana fruit. Plant Cell Physiol 26, 1067–1074.

    CAS  Google Scholar 

  • Hatanaka, A. (1993). The biogeneration of green odour by green leaves. Phytochemistry 34, 1201–1218.

    Article  CAS  Google Scholar 

  • Hatanaka, A., et al. (1982). Solubilization and properties of the enzyme cleaving 13-hydroperoxylinolenic acid in tea leaves. Phytochemistry 21, 13–17.

    Article  CAS  Google Scholar 

  • Hatanaka, A., et al. (1989). Non-enzymatic isomerization of 12-hydroxy-3Z-dodecenal to the 2E-isomer after enzymatic cleavage of 13-hydro-peroxilinoleyl alcohol in tea chloroplasts. Zeitschrift für Naturforschung 44c, 161–164.

    CAS  Google Scholar 

  • Hatanaka, A. & Harada, T. (1973). Formation of cis-3-hexenal, trans-2-hexenal and cis-3-hexenol in macerated Thea sinensis leaves. Phytochemistry 12, 2341–2346.

    Article  CAS  Google Scholar 

  • Hatanaka, A., Kajiwara, T. & Koda, T. (1979). Specificity of enzyme system producing C6-aldehyde in tea chloroplasts. Agric Biol Chem 43, 2115–2117.

    Article  CAS  Google Scholar 

  • Hatanaka, A., Kajiwara, T. and Sekiya, J. (1976a). Seasonal variations in trans-2-hexenal and linolenic acid in homogenates of Thea sinensis leaves. Phytochemistry 15, 1889–1891.

    Article  CAS  Google Scholar 

  • Hatanaka, A., Kajiwara, T. and Sekiya, J. (1976b). Biosynthesis of trans-2-hexenal in chloroplasts from Thea sinensis. Phytochemistry 15, 1125–1126.

    Article  CAS  Google Scholar 

  • Hatanaka, A., Kajiwara, T. and Sekiya, J. (1987). Biosynthetic pathway for C6-aldehydes formation from linolenic acid in green leaves. Chem Phys Lipids 44, 341–361.

    Article  CAS  Google Scholar 

  • Hilbers, M. P., et al. (1995). Heterogeneity and developmental changes of lipoxygenases in etiolated lentil seedlings. Plant Sci 111, 169–180.

    Article  CAS  Google Scholar 

  • Hirayama, D., et al. (1975). Purification and properties of a lipid acyl-hydrolase from potato tubers. Biochim Biophys Acta 384, 127–137.

    Article  CAS  Google Scholar 

  • Holtman, W.L., et al. (1997). Expression and substrate specificity of lipoxygenase isoenzymes of germinating barley. In Physiology, Biochemistry and Molecular Biology of Plant Lipids, pp 284–286. Edited by J. P. Williams, M. U. Khan and N. W. Lem. Dordrecht, Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Huang, A. H. C. (1987). Lipases. In The Biochemistry of Plants, Lipids: Structure and Function, vol. 9, pp 91–119. Edited by P. K. Stumpf. New York: Academic Press.

    Google Scholar 

  • Kim, I.-S. and Grosh, W. (1979). Partial purification of a lipoxygenase from apples. JAgric Food Chem 27, 243–246.

    Article  CAS  Google Scholar 

  • Kim, I.-S. and Grosh, W. (1981). Partial purification and properties of a hydroperoxide lyase from fruits of pear. JAgric Food Chem 29, 1220–1225.

    Article  CAS  Google Scholar 

  • Kondo, Y., Hashidoko, Y. and Mizutani, J. (1995). An enzymatic formation of 13-oxotrideca-9,11dienoic acid from 13-hydroperoxylinolenic acid by a homolytic hydroperoxide lyase in elicitortrated soybean cotyledons. Biochim Biophys Acta 1255, 9–15.

    Article  Google Scholar 

  • Marzouk, B. and Cherif, A. (1981). La lipogenèse dans l’olive. II. Formation des lipides polaires. Oleaginoux 36, 387–391.

    CAS  Google Scholar 

  • Matsui, K., et al. (1991). Fatty acid hydroperoxide cleaving enzyme, hydroperoxide lyase, from tea leaves. Phytochemistry 30, 2109–2113.

    Article  CAS  Google Scholar 

  • Matsui, K., et al. (1997). Purification and molecular cloning of bell pepper fruit fatty acid hydroperoxide lyase. In Physiology, Biochemistry and Molecular Biology of Plant Lipids, pp 348–350. Edited by J. P. Williams, M. U. Khan and N. W. Lem. Dordrecht, Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Matsui, K. and Kajiwara, T. (1995). Cucumber cotyledon lipoxygenase oxygenizes trilinolein at the lipid/water interface. Lipids 30, 733–738.

    Article  CAS  Google Scholar 

  • Mauricio, J. C., et al. (1993). Ester formation and specific activities of in vitro alcohol acetyltransferase and esterase by Saccharomyces cerevisiae during grape must fermentation. J. Agric. Food Chem. 41, 2086–2091.

    Article  CAS  Google Scholar 

  • Mazuelos Vela, E (1971). La lipasa de la semilla de aceituna. GrasasAceites 22, 460–463.

    CAS  Google Scholar 

  • Morales, M. T., et al. (1995). Virgin olive oil aroma: relationship between volatile compounds and sensory attributes by chemometrics. J Agric. Food Chem. 43, 2925–2931.

    Article  CAS  Google Scholar 

  • Myers, M. J., Issenberg, P. and Wick, E. L. (1970). L-Leucine as a precursor of isoamyl alcohol and isoamyl acetate, volatile aroma constituents of banana fruit. Phytochemistry 9, 1693–1700.

    Article  CAS  Google Scholar 

  • Olías, J. M., et al. (1980). Componentes volatiles en el aroma del aceite de oliva. IV. Su evolución e influencia en el aroma durante el proceso de maduración de los frutos en las variedades picual y hojiblanca. GrasasAceites 31, 391–402.

    Google Scholar 

  • Olías, J. M., et al. (1993). Aroma of virgin olive oil: Biogenesis of the “green” odor notes. J. Agric. Food Chem. 41, 2368–2373.

    Article  Google Scholar 

  • Pérez, A. G., et al. (1992). Aroma components and free amino acids in strawberry variety Chandler during ripening. JAgric Food Chem 40, 2232–2235.

    Article  Google Scholar 

  • Pérez, A. G., Sanz, L. C. and Olías, J. M. (1993). Partial purification and some properties of alcohol acyltransferase from strawberry fruits. JAgric Food Chem 41, 1462–1466.

    Article  Google Scholar 

  • Pérez-Gilabert, M., Veldink, G. A. and Vliegenthart, J. E G. (1998). Oxidation of dilinoleoyl phosphatidylcholine by lipoxygenase I from soybeans. Arch Biochem Biophys 354, 18–23.

    Article  Google Scholar 

  • Phillips, D. R., et al. (1979). Partial purification and properties of a cis-3:trans-2-enal isomerase from cucumber fruit. Phytochemistry 18, 401–404.

    Article  CAS  Google Scholar 

  • Phillips, D. R. and Galliard, T. (1978). Flavor biogenesis. Partial purification and properties of a fatty acid hydroperoxide cleaving enzyme from fruits of cucumber. Phytochemistry 17, 335–358.

    Article  Google Scholar 

  • Piazza, G. J. and Nunez, A. (1995). Oxidation of acylgycerols and phosphoglycerides by soybean lipoxygenase. JAm Oil Chem Soc 72, 463–466.

    Article  CAS  Google Scholar 

  • Privett, O. S., et al. (1955). Products of the lipoxidase-catalysed oxidation of sodium linoleate. JAm Oil Chem Soc 32, 505–511.

    Article  CAS  Google Scholar 

  • Ranalli, A. and De Mattia, G. (1997). Characterization of olive oil produced with a new enzyme processing aid. JAm Oil Chem Soc 74, 1105–1113.

    Article  CAS  Google Scholar 

  • Roza, M. and Franke, A. (1973). Soybean lipoxygenase. Iron-containing enzyme. Biochim Biophys Acta 327, 24–31.

    Article  CAS  Google Scholar 

  • Rugini, E. (1997). New pespective for an old crop: Biotechnologies in olive breeding. (Abstract to the Third International Symposium on Olive Growing, Chania, Greece, 1997). Olea 24, 16.

    Google Scholar 

  • Sachs, M. M., Freeling, M. and Okimoto, R. (1980). The anaerobic proteins in maize. Cell 20761–767.

    Google Scholar 

  • Salas, J. J. (1999). Ruta de la Lipoxigenasa en Aceituna: Contribución a la Biogenesis del Aroma del Aceite de Oliva. Ph.D. Thesis. Universidad de Sevilla. Seville, Spain.

    Google Scholar 

  • Salas, J. J. and Sanchez, J. (1997). Biogenesis of alcohols present in the aroma of virgin olive oil. In Physiology, Biochemistry and Molecular Biology of Plant Lipids, pp 328–330. Edited by J. P. Williams, M. U. Khan and N. W Lem. Dordrecht, Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Salas, J. J. and Sânchez, J. (1998a). Lipoxygenase activity from the pulp tissues of olive (Olea europaea) fruits. In Advances in Plant Lipids Research, pp. 297–299. Edited by J. Sanchez, E. Cerdâ-Olmedo and E. Martinez-Force. Seville, Spain: Universidad de Sevilla, Secretariado de Publicaciones.

    Google Scholar 

  • Salas, J. J. and Sânchez, J. (1998b). Hydroperoxide lyase from olive (Olea europaea) fruits. In Advances in Plant Lipids Research, pp. 300–302. Edited by J. Sanchez, E. Cerdâ-Olmedo and E. Martinez-Force. Seville, Spain: Universidad de Sevilla, Secretariado de Publicaciones.

    Google Scholar 

  • Salas, J. J. and Sânchez, J. (1998c). Alcohol dehydrogenases from olive (Olea europaea) fruit. Phytochemistry 48, 35–40.

    Article  CAS  Google Scholar 

  • Salas, J. J. and Sanchez, J. (1999). The decrease of virgin olive oil flavor produced by high malaxation temperature is due to inactivation of hydroperoxide lyase. J Agric. Food Chem. 47 in press.

    Google Scholar 

  • Salch, Y. P., et al. (1995). Characterization of a C-5,13-cleaving enzyme of 13(S)-hydroperoxide of linolenic acid by soybean seed. Plant Physiol 108, 1211–1218.

    CAS  Google Scholar 

  • Sanz, L. C., et al. (1992). Physico-chemical properties of chickpea lipoxygenases. Phytochemistry 31, 3381–3384.

    Article  CAS  Google Scholar 

  • Sekiya, J., et al. (1983). Distribution of lipoxygenase and hydroperoxide lyase in the leaves of various plant species. Phytochemistry 22, 1867–1869.

    Article  CAS  Google Scholar 

  • Shibata, Y., et al. (1995a). Purification and properties of fatty acid hydroperoxide lyase from green bell pepper fruit. Plant Cell Physiol 36 147–156.

    Google Scholar 

  • Shibata, Y., et al. (1995b). Fatty acid hydroperoxide lyase is a heure protein. Biochem Biophys Res Commun 207, 438–443.

    Article  CAS  Google Scholar 

  • Shibata, D., et al. (1988). Primary structure of soybean lipoxygenase 2. J.iol Chem 263, 6816–6821. Siedow, J. N. (1991). Plant lipoxygenase: Structure and function. Annu Rev Plant Physiol Plant Mol Bio142, 145–188.

    Google Scholar 

  • Song, W. C. and Brash, A. R. (1991). Purification of an allene oxide synthase and identification of the enzyme as a cytochrome P-450. Science 253, 781–784.

    Article  CAS  Google Scholar 

  • Takamura, H. and Gardner, H. W. (1996). Oxygenation of (3Z)-alkenal to (2E)-4-hydroxy-2-alkenal in soybean seed (Glycine max L.). Biochim. Biophys. Acta 1303, 83–91.

    Article  Google Scholar 

  • Theorell, H., Holman, R. T. and Akeson, A. (1947). Crystalline lipoxidase. Acta Chem Scand 1, 571–576.

    Article  CAS  Google Scholar 

  • Tressl, R. and Drawert, E (1973). Biogenesis of banana volatiles. JAgric Food Chem 21, 560–565.

    Article  CAS  Google Scholar 

  • Ueda, Y. and Ogata, K. (1977). Coenzyme A-dependent esterification of alcohols and acids in separated cells of banana pulp and its homogenate. Nippon Shokuhin Kogyo Gakkaishi 24, 624–630.

    Article  CAS  Google Scholar 

  • Veldnick, G. A., Vliegenthart, J. E. G. and Boldingh, J. (1977). Plant lipoxygenases. Prog Chem Fats Other Lipids 15, 131–166.

    Article  Google Scholar 

  • Vick, B. A. (1993). Oxygenated fatty acids of the lipoxygenase pathway. In Lipid Metabolism in Plants, pp 167–191. Edited by T. S. Moore, Jr., Boca Raton, FL: CNR.

    Google Scholar 

  • Vick, B. A. and Zimmerman, D. C. (1976). Lypoxygenase and hydroperoxide lyase in germinating watermelon seedlings Plant Physiol 57, 780–788.

    Article  CAS  Google Scholar 

  • Vioque, E. and De la Maza, M. P. (1973). Glicolípidos de la aceituna. GrasasAceites 24, 226–235.

    CAS  Google Scholar 

  • Yamashita, I., Nemoto, Y. and Yoshikawa, S. (1976). Formation of volatile alcohols and esters from aldehydes in strawberries. Phytochemistry 15, 1633–1637.

    Article  CAS  Google Scholar 

  • Yoon, S. and Klein, B.P. (1979). Some properties of pea lipoxygenase isoenzymes. JAgric Food Chem 27, 955–962.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sánchez, J., Salas, J.J. (2000). Biogenesis of Olive Oil Aroma. In: Harwood, J., Aparicio, R. (eds) Handbook of Olive Oil. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5371-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5371-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5194-6

  • Online ISBN: 978-1-4757-5371-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics