The Role of Volatile Compounds and Polyphenols in Olive Oil Sensory Quality

  • Maria Teresa Morales
  • Maria Tsimidou

Abstract

Sensory quality plays an important role in the acceptability of foodstuffs. Color and flavor are the main sensations that contribute to their acceptability by consumers. Flavor is a complex sensation consisting primarily of smell and taste, but it is complemented by tactile and kinesthetic sensations (Reineccius 1993). It is evoked by stimulation of all oral and nasal chemosensory systems because the brain blends the information from the individual systems into a single perceptual gestalt (Maruniak 1988). The role of flavor in the food supply is critical and beneficial; it is vital in the control of food recognition, selection, and acceptance. Flavor also plays a role in nutrition as it is partly responsible for aiding the digestion of food in humans (Ensor 1989).

Keywords

Volatile Compound Polar Fraction Sensory Defect Olive Fruit Phenolic Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agro–Industry Research (AIR) (1999). Final Report of European Research ProjectAlR3–CT94–1967. Olive oil flavour and aroma: Biochemistry and chemistry of sensory factors affecting consumer appreciation and their analysis by artificial intelligence. The Commission of the European Communities.Google Scholar
  2. Akasbi, M., Shoeman, D. W. and Csallany, A. S. (1993). HPLC of selected phenolic compounds in olive oils. JAm Oil Chem Soc 70, 367–370.CrossRefGoogle Scholar
  3. Alberola, J. and Izquierdo, L. (1979). La fracción aromatica del zumo de naranja. II. Analisis del espacio de cabeza. RevAgroquim Technol Aliment 19, 327–337.Google Scholar
  4. Alloggio, A., Caponio, E and De Leonardis, T. (1996). Influenza delle tecniche di preparazione della pasta di olive sulla qualita dell’olio. Nota I. Profilo quali-quantitativo delle sostanze fenoliche, mediante HPLC, in olio d’oliva vergine della cv Ogliarola Salentina. Riv Ital Sostanze Grasse 73, 355–360.Google Scholar
  5. Almarcha, M. and Rovira, J. (1994). Microwave-guide thermal desorption in food analysis. Tech Lab 16, 699–703.Google Scholar
  6. Amerine, M. A. and Ough, C. S. (1974). Wine and Must Analysis, p. 66. New York: John Wiley and Sons. Amiot, M. J., Fleuriet, A. and Macheix, J. J. (1986). Importance and evolution of phenolic compounds in olive during growth and maturation. JAgric Food Chem 34, 823–826.Google Scholar
  7. Amiot, M. J., Fleuriet, A. and Macheix, J. J. (1989). Accumulation of oleuropein derivatives during olive maturation. Phytochemistry 28, 67–69.CrossRefGoogle Scholar
  8. Andreoni, N. and Fiorentini, R. (1995). Determinazione di composti fenolici in oli di oliva. Riv Ital Sostanze Grasse 72, 163–164.Google Scholar
  9. Angerosa, E, et al. (1995). GC-MS evaluation of phenolic compounds in virgin olive oil. JAgric Food Chem 43, 1802–1807.CrossRefGoogle Scholar
  10. Angerosa, E, et al. (1996a). Characterization of phenolic and secoiridoid aglycons present in virgin olive oil by gas chromatography-chemical ionization mass spectrometry. J Chromatogr 736, 195–203.CrossRefGoogle Scholar
  11. Angerosa, E, et al. (1996b). Sensory evaluation of virgin olive oils by artificial neural network processing of dynamic head-space gas chromatographic data. JSci Food Agric 72, 323–328.CrossRefGoogle Scholar
  12. Angerosa, E and Di Giovacchino, L. (1996). Natural antioxidants of virgin olive oil obtained by two and three-phase centrifugal decanters. Grasas Aceites 47, 247–254.CrossRefGoogle Scholar
  13. Angerosa, E, Lanza, B and Marsilio, V. (1996). Biogenesis of fusty defect in virgin olive oils. Grasas Aceites 47, 142–150.CrossRefGoogle Scholar
  14. Aparicio, R., et al. (1994). Relationship between COI test and other sensory profiles by statistical procedures. Grasas Aceites 45, 26–41.CrossRefGoogle Scholar
  15. Aparicio, R., Calvente, J. J. and Morales, M. T. (1996). Sensory authentication of European extra-virgin olive oil varieties by mathematical procedures. J Sci Food Agric 72, 435–447.CrossRefGoogle Scholar
  16. Aparicio, R. and Morales, M. T. (1994). Optimization of a dynamic headspace technique for quantifying virgin olive oil volatiles. Relationship between sensory attributes and volatile peaks. Food Qual Pref 5, 109–114.CrossRefGoogle Scholar
  17. Aparicio, R. and Morales, M. T. (1995). Sensory wheels: a statistical technique for comparing QDA panels. Application to virgin olive oil. JSci FoodAgric 67, 247–257.CrossRefGoogle Scholar
  18. Aparicio, R. and Morales, M. T. (1998a). Characterization of olive ripeness by green aroma compounds of virgin olive oil. JAgric Food Chem 46, 1116–1122.CrossRefGoogle Scholar
  19. Aparicio R. and Morales M. T. (1998b). Relationship between phenolic compounds and sensory attributes of virgin olive oil. Internal Report IGS-PH-120398, Instituto de la Grasa, Seville, Spain. Aparicio, R., Morales, M. T. and Alonso, M. V. (1996). Relationship between volatile compounds and sensory attributes of olive oils by the sensory wheel. JAm Oil Chem Soc 73, 1253–1264.CrossRefGoogle Scholar
  20. Aparicio, R., Morales, M. T. and Alonso, V. (1997). Authentication of European extra-virgin olive oils by their chemical compounds, sensory attributes and consumers’ attitudes. JAgric Food Chem 45, 1076–1083.CrossRefGoogle Scholar
  21. Arrigo, L. and Rondinone, R. (1995). I micronutrienti eu-ossidanti nell olio di oliva. Riv Ital Sostanze Grasse 72, 11–14.Google Scholar
  22. Association of Official Agricultural Chemists (AOAC) (1960). Official Methods of Analysis, 9th ed., pp. 111–144. Edited by W. Horwitz. Washington, DC: Association of Official Agricultural Chemists.Google Scholar
  23. Baldioli, M., et al. (1996). Antioxidant activity of tocopherols and phenolic compounds of virgin olive oil. JAm Oil Chem Soc 73, 1589–1593.CrossRefGoogle Scholar
  24. Bate-Smith, E. C. (1973). Haemanalysis of tannins: the concept of relative astringency. Phytochemistry 12, 907–912.CrossRefGoogle Scholar
  25. Bello, A. C. (1992). Rapid isolation of the sterol fraction in edible oils using a silica cartridge. JAOAC Int 75, 1120–1123.Google Scholar
  26. Benkler, K. F. and Reineccius, G. A. (1980). Flavor isolation from fatty foods via solvent extraction and membrane dialysis. JFood Sci 45, 1084–1085.CrossRefGoogle Scholar
  27. Berra, B., et al. (1995). Antioxidant properties of minor polar components of olive oil on the oxidative processes of cholesterol in human LDL. Riv Ital Sostanze Grasse 72, 285–288.Google Scholar
  28. Betti, A., Coppi, S. and Bighi, C. (1985). Pre-concentration of organic pollutants. Potential interference from the use of styrene copolymer adsorbents. J Chromatogr 349, 181–187.CrossRefGoogle Scholar
  29. Bianchi, G. and Pozzi, N. (1994). 3,4-dihydroxyphenylglycol, a major C6–C2 phenolic in Olea europaea fruits. Phytochemistry 35, 1335–1337.Google Scholar
  30. Bianco, A., Lo Scalzo, R. and Scarpati, M. L. (1993). Isolation of cornoside from Olea europaea and its transformation into halleridone. Phytochemistry 32, 455–457.CrossRefGoogle Scholar
  31. Bocci, F., Frega, N. and Lercker, G. (1992). Preliminary research on the volatile component of extra virgin olive oil. Riv Ital Sostanze Grasse 69, 611–613.Google Scholar
  32. Booker, J. L. (1985). Collecting volatile compounds by simple diffusion: an alternative to purge-andtrap. J Chromatogr Sci 23, 415–416.CrossRefGoogle Scholar
  33. Cantarelli, C. (1961). Polyphenols in the fruit and in olive oil. Riv Ital Sostanze Grasse 38, 69–72. Catalano, D. and Caponio, E. (1996). Machines for olive oil paste preparation producing quality virgin olive oil. Lipid 98, 408–412.Google Scholar
  34. Ceccon, L. (1986). La frazione lipidica nella caratterizzazione merceologica dei formaggi. Acidi grassi liberi volatili. Nota IV. Riv Ital Sostanze Grasse 63, 551–554.Google Scholar
  35. Christie, W. W. (1992). Solid-phase extraction columns in the analysis of lipids. In Advances in Lipid Methodology-One, pp. 1–17. Edited by W. W. Christie. Ayr, Scotland: Oily Press.Google Scholar
  36. Cichelli, A. and Solinas, M. (1984). I composti fenolici delle olive e dell’olio di oliva. Riv Merceol 23, 55–65.Google Scholar
  37. Cinquanta, L., Esti, M. and La Notte, E. (1997). Evolution of phenolic compounds in virgin olive oil during storage. JAm Oil Chem Soc 74, 1259–1264.CrossRefGoogle Scholar
  38. Clark, R. G. and Cronin, D. A. (1975). The use of activated charcoal for the concentration and analysis of headspace vapours containing food aroma volatiles. JSci FoodAgric 26, 1615–1624.CrossRefGoogle Scholar
  39. Cortesi, N., et al. (1995). I componenti minori polari degli oli vergini di oliva: ipotesi di struttura mediante LC-MS. Riv Ital Sostanze Grasse 72, 241–251.Google Scholar
  40. Cortesi N., Azzolini M. and Rovellini, R. (1995). Dosaggio dei componenti minori polari (CMP) in oli vergini di oliva. Riv Ital Sostanze Grasse 72, 333–337.Google Scholar
  41. Cortesi, N. and Fedeli, E. (1983). I composti polari di oli di oliva vergine. Nota I. Riv Ital Sostanze Grasse 60, 341–351.Google Scholar
  42. Cortesi, N., Fedeli, E. and Tiscornia, E. (1978). Indagine sulla composizione di insaponificabili di oli vegetali mediante HPLC. Riv Ital Sostanze Grasse 55, 168–175.Google Scholar
  43. Cortesi, N., Fedeli, E. and Tiscomia, E. (1985). I componenti polari degli oli di oliva. Possibili utilizzazioni analitiche. Nota I. Riv Ital Sostanze Grasse 62, 281–286.Google Scholar
  44. Cortesi, N., Ponziani, A. and Fedeli, E. (1981). Caratterizzazione degli oli vergini e raffinati mediante HPLC dei componenti polari. Riv Ital Sostanze Grasse 58, 108–114.Google Scholar
  45. Crisp, S. (1980). Solid sorbent gas samplers. Ann Occup Hyg 23, 47–76.CrossRefGoogle Scholar
  46. Davis, P. L. (1970). A simple method to prevent loss of volatile during headspace analysis. J Chromatogr Sci 8, 423–424.CrossRefGoogle Scholar
  47. Del Barrio, A., et al. (1983). Aplicación de la cromatografia gas-liquido, técnica de espacio de cabeza, al problema del atrojado de los aceites de oliva. II. Grasas Aceites 34, 1–6.Google Scholar
  48. Del Barrio, A., Gutiérrez, E and Gutiérrez, R. (1981). Aplicación de la cromatografia gas-liquido, técnica de espacio de cabeza, al problema del atrojado de los aceites de oliva. I. Grasas Aceites 32, 155–161.Google Scholar
  49. Di Giovacchino, L. and Serraiocco, A. (1995). Influence of processing methods of olives on the composition of the headspace of oils. Riv Ital Sostanze Grasse 72, 443–450.Google Scholar
  50. Dobarganes, M. C., Olías, J. M. and Gutiérrez, R. (1980). Componentes volatiles en el aroma del aceite de oliva virgen. III. Reproducibilidad del método utilizado para su aislamiento, concentración y separación. Grasas Aceites 31, 317–321.Google Scholar
  51. Dobarganes, M. C., Rios, J. J. and Pérez-Camino, M. C. (1986). Relaciones entre la composición de aceites vegetales y los componentes volatiles producidos durante su termoxidación. Grasas Aceites 37, 61–67.Google Scholar
  52. Dressler, M. (1979). Extraction of trace amounts of organic compounds from water with porous organic polymers. J Chromatogr 165, 167–206.CrossRefGoogle Scholar
  53. Drozd, J. and Novàk, J. (1979). Headspace gas analysis by gas chromatography. J Chromatogr 165, 141–165.CrossRefGoogle Scholar
  54. Dupuy, H. R, et al. (1985). Direct sampling capillary gas chromatography of volatiles in vegetable oils. JAm Oil Chem Soc 62, 1690–1693.CrossRefGoogle Scholar
  55. Dupuy, H. R, Fore, S. P. and Goldblatt, L. A. (1971). Elution and analysis of volatiles in vegetable oils by gas chromatography. JAm Oil Chem Soc 48, 876.CrossRefGoogle Scholar
  56. Dupuy, H. R, Fore, S. P. and Goldblatt, L. A. (1973). Direct gas chromatographic examination of volatiles in salad oil and shortenings. JAm Oil Chem Soc 50, 340–342.CrossRefGoogle Scholar
  57. Ensor, D. R. (1989). The contribution of flavour chemistry to the food industry. In Flavour Chemistry of Lipid Foods, pp. 1–12. Edited by D. B. Min and T. H. Smouse. Champaign, IL: American Oil Chemists’ Society.Google Scholar
  58. European Communities (EC) (1991). Official Journal of the Commission of the European Communities. Regulation No. 2568/91, L248, September 5.Google Scholar
  59. European Communities (EC) (1995). Official Journal of the Commission of the European Communities. Regulation No. 656/95, L69, March 29.Google Scholar
  60. European Communities (EC) (1997). Official Journal of the Commission of the European Communities. Regulation No. 2472/97, L341, December 12.Google Scholar
  61. Favati, E, et al. (1995). Rapid extraction and determination of phenols in extra virgin olive oil. In Food Flavors: Generation, Analysis and Process Influence, pp. 429–452. Edited by G. Charalambous. Amsterdam: Elsevier Science.Google Scholar
  62. Favati, E., Caporale, G. and Bertuccioli, M. (1994). Rapid determination of phenol content in extra virgin olive oil. GrasasAceites 45, 68–70.CrossRefGoogle Scholar
  63. Fedeli, E. and Jacini, G. (1971). Lipid composition of vegetables oils. Adv Lipid Res 9, 335–382.Google Scholar
  64. Flath, R. A., Forrey, R. R. and Guadagni, D. G. (1973). Aroma components of olive oil. JAgric Food Chem 21, 948–952.CrossRefGoogle Scholar
  65. Flath, R. A., Sugisawa, H. and Teranishi, R. (1981). Problems in flavor research. In Flavor Research: Recent Advances, pp. 1–10. Edited by R. Teranishi, R. A. Flath and H. Sugisawa. New York: Marcel Dekker.Google Scholar
  66. Forcadell, M. Li., et al. (1987). Determination du tyrosol et de l’hydroxy-tyrosol dans des huiles vierges d’olive. Rev Fr Corps Gras 34, 547–549.Google Scholar
  67. Gariboldi, P., Jommi, G. and Verotta, L. (1986). Secoiridoids from Olea europaea. Phytochemistry 25, 865–869.CrossRefGoogle Scholar
  68. Gasparoli, A. and Fedeli, E. (1987). Valutazione dei componenti volatili negli oli alimentari: Un approccio alla tecnica “purgue and trap.” Riv Ital Sostanze Grasse 64, 453–460.Google Scholar
  69. Gasparoli, A., Fedeli, E. and Manganello, B. (1986). Olio vergine di oliva: Valutazione dei caratteri organolettici attraverso tecniche strumentali. Riv Ital Sostanze Grasse 63, 571–582.Google Scholar
  70. Gensic, J. L., Szuhaj, B. E and Endres, J. G. (1984). Automated gas chromatographic system for volatile profile analysis of fats and oils. JAm Oil Chem Soc 61, 1246–1249.CrossRefGoogle Scholar
  71. Godefroot, M., Sandra, P. and Verzele, H. (1981). New method for quantitative essential oil analysis. J Chromatogr 203, 325–335.CrossRefGoogle Scholar
  72. Golovnya, R. V. (1982). Some analytical problems in flavour research. J Chromatogr 251, 249–264.CrossRefGoogle Scholar
  73. Gourama, H. and Bullerman, L. B. (1987). Effects of oleuropein on growth and aflatoxin production by aspergillus parasiticus. Lebensm mss Technol 20, 226–228.Google Scholar
  74. Graciani Constante, E., Colchero Vela, C. and Vazquez Roncero, A. (1980). Estudio de los componentes polares del aceite de oliva por cromatografia liquida de alta eficacia (HPLC). I. Cromatografia de adsorción. Grasas Aceites 31, 85–89.Google Scholar
  75. Graciani Constante, E. and Vazquez Roncero, A. (1980). Estudio de los componentes del aceite de oliva por cromatografia liquida de alta eficacia (HPLC). II. Cromatografia en fase inversa. Grasas Aceites 31, 237–243.Google Scholar
  76. Graciani Constante, E. and Vazquez Roncero, A. (1981). Estudio de los componentes polares del aceite de oliva por cromatografia liquida de alta eficacia (HPLC). III. Aplicación a diversos tipos de aceites Ai-genes. GrasasAceites 32, 365–371.Google Scholar
  77. Gutfinger, T. (1981). Polyphenols in olive oils. JAm Oil Chem Soc 58, 966–968.CrossRefGoogle Scholar
  78. Guth, H. and Grosch, W. (1989). 3-Methylnonane-2,4-dione: An intense odour compound formed during flavour reversion of soya-bean oil. Fat Sci Technol 91, 225–230.Google Scholar
  79. Guth, H. and Grosch, W. (1993). Quantitation of potent odorants of virgin olive oil by stable-isotope dilution assays. JAm Oil Chem Soc 70, 513–518.CrossRefGoogle Scholar
  80. Gutiérrez, R., et al. (1975). Los métodos organolépticos y cromatograficos en la valoración de las caracteristicas aromaticas del aceite de oliva virgen. Grasas Aceites 26, 21–31.Google Scholar
  81. Gutiérrez, R., et al. (1977). Relación entre los polifenoles y la calidad y estabilidad del aceite de oliva virgen. GrasasAceites 28, 101–106.Google Scholar
  82. Gutiérrez, R., et al. (1981). Componentes volatiles en el aroma del aceite de oliva virgen. V. Aceites obtenidos de frutos atrojados Grasas Aceites 32, 299–303.Google Scholar
  83. Gutiérrez, F., et al. (1989). Bitter taste of virgin olive oil: correlation of sensory evaluation and instrumental HPLC analysis. JFood Sci 54, 68–70.CrossRefGoogle Scholar
  84. Gutiérrez Rosales, E, et al. (1992). Evaluation of the bitter taste in virgin olive oil. JAm Oil Chem Soc 69, 394–395.CrossRefGoogle Scholar
  85. Harborne, J. B. (1989). General procedures and measurements of total phenolics. In Methods in Plant Biochemistry, pp.1–28. Edited by J. B. Harborne. Plant Phenolics, vol. 1. London: Academic Press.Google Scholar
  86. Hawthorne, S. B., Krieger, M. S. and Miller, D. J. (1988). Analysis of flavor and fragrance compounds using supercritical fluid extraction coupled with gas chromatography. Anal Chem 60, 472–477.CrossRefGoogle Scholar
  87. International Olive Oil Council (IOOC) (1996). Organoleptic Assessment of Virgin Olive Oil. COI/T.20/Document No. 1. Madrid, November 20.Google Scholar
  88. International Olive Oil Council (IOOC) (1997). Trade Standard Applying to Olive Oil and Olive Pomace Oil. COI/T.15/Doc. No. 2/6th Rev. Madrid, June 5.Google Scholar
  89. Jackson, H. W. (1981). Techniques for flavor and odor evaluation of soy oil. JAm Oil Chem Soc 58, 227–231.CrossRefGoogle Scholar
  90. Jackson, H. W. and Giacherio D. J. (1977). Volatiles and oil quality. JAm Oil Chem Soc 54, 458–460.CrossRefGoogle Scholar
  91. Jennings, W. G. and Filsoof, M. (1977). Comparison of sample preparation techniques for gas chromatographic analysis. JAgric Food Chem 25, 440–445.CrossRefGoogle Scholar
  92. Kallithraka, S., Bakker, J. and Clifford, M. N. (1997). Effect of pH astringency in model solutions and wines. JAgric Food Chem 45, 2211–2216.CrossRefGoogle Scholar
  93. Kiritsakis, A. K. (1998). Flavor components of olive oil: A review. JAm Oil Chem Soc 75, 673–681.CrossRefGoogle Scholar
  94. Krost, K. J., et al. (1982). Collection and analysis of hazardous organic emissions. Anal Chem 54, 810–817.CrossRefGoogle Scholar
  95. Kuwajima, H., et al. (1988). A secoiridoid glycoside from Olea europaea. Phytochemistry 27, 1757–1759.CrossRefGoogle Scholar
  96. Le Tutour, B. and Guedon, D. (1992). Antioxidative activities of Olea europaea leaves and related phenolic compounds. Phytochemistry 31, 1173–1178.CrossRefGoogle Scholar
  97. Lewis, M. J. and Williams, A. A. (1980). Potential artefacts from using porous polymers for collecting aroma components. JSci FoodAgric 31, 1017–1026.CrossRefGoogle Scholar
  98. Limiroli, R., et al. (1995). 111 and 13C NMR characterization of new oleuropein aglycones. J Chem Soc Perkin Trans 1, 1519–1523.Google Scholar
  99. Limiroli, R., et al. (1996). 1H NMR study of phenolics in the vegetation water of three cultivars of Olea europaea. Similarities and differences. JAgric Food Chem 44, 2040–2048.Google Scholar
  100. Litridou, M., et al. (1997). Phenolic compounds in virgin olive oils: fractionation by solid phase extraction and antioxidant activity assessment. J Sci Food Agric 74, 169–174.CrossRefGoogle Scholar
  101. Macheix, J. J., Fleuriet, A. and Billot, J. (1991). Fruit Phenolics, pp. 25–26, 92. Boca Raton, FL: CRC Press.Google Scholar
  102. MacLeod, G. and Ames, J. M. (1986). Comparative assessment of the artefact background on thermal desorption of Tenax GC and Tenax TA. J Chromatogr 355, 393–398.CrossRefGoogle Scholar
  103. Mannino, S., Cosio, M. S. and Bertuccioli, M. (1993). HPLC of phenolic compounds in virgin olive oils using amperometric detection. Ital JFood Sci 4, 363–370.Google Scholar
  104. Mariani, C., Venturini, S. and Fedeli, E. (1990). Sulla presenza di prodotti alogenati volatili negli oli vergini di oliva. Riv Ital Sostanze Grasse 67, 239–244.Google Scholar
  105. Maruniak, J. A. (1988). The sense of smell. In Sensory Analysis of Foods, pp. 25–68. Edited by J. R. Piggot. London: Elsevier Applied Science.Google Scholar
  106. Mateos, A. and Carbonell, E. (1990). Analisis de la fracción aromatica de alimentos. Técnicas de extracción y concentración. RevAgroquim Technol Aliment 30, 431–444.Google Scholar
  107. Mattei, A., Stella, C. and Osti, M. (1988). Olio extra vergine di oliva e componenti polari minori: Influenza dei sistemi e delle condizioni di estrazione. Riv Ital Sostanze Grasse 65, 575–579.Google Scholar
  108. Mehlitz, A. and Gierschner, K. (1962). Ueber bisherige gaschromatographische Untersuchungen der Aromastoffe von Frechten. Proceedings Symposium Volatile Fruit Flavours, International Federation Fruit Juice Producers. Bern, p. 25.Google Scholar
  109. Mesa, J. A. G., et al. (1990). Direct automatic determination of polyphenols in olive oils in the aqueous phase of a flow-injection liquid-liquid extraction system without phase separation. Anal Chim Acta 235, 441–444.CrossRefGoogle Scholar
  110. Min, D. B. (1981). Correlation of sensory evaluation and instrumental gas chromatographic analysis of edible oils. JFood Sci 46, 1453–1456.CrossRefGoogle Scholar
  111. Min, D. B. (1983). Analyses of flavor qualities of vegetable oils by gas chromatography. JAm Oil Chem Soc 60, 544–545.CrossRefGoogle Scholar
  112. Min, D. B. and Wen, J. (1983). Effects of dissolved free oxygen on the volatile compounds of oils. J Food Sci 48, 1429–1430.CrossRefGoogle Scholar
  113. Minguez-Mosquera, M. I., Gandul-Rojas, B. and Gallardo-Guerrero, L. (1992). Rapid method of quantification of chlorophylls and carotenoids in virgin olive oil by HPLC. JAgric Food Chem 40, 60–63.CrossRefGoogle Scholar
  114. Montedoro, G. (1972). I costituenti fenolici presenti negli oli vergini di oliva. Sci Technol Aliment 2, 177–185.Google Scholar
  115. Montedoro, G. (1973). Esame analitico dei costituenti fenolici presenti nell’olio di oliva in funzione delle caratteristiche della drupa, loro ruolo nella stabilita all’ossidazione e possibile interferenza nella determinazione del numero di perossidi. In Estratto dagli Annali della Facolta di Agraria dell Universita di Perugia, XXVIII, pp. 1–19. Perugia, Italy: University of Perugia.Google Scholar
  116. Montedoro, G., et al. (1992a). Simple and hydrolyzable phenolic compounds in virgin olive oil. 1. Their extraction, separation, and quantitative and semiquantitative evaluation by HPLC. JAgric Food Chem 40, 1571–1576.CrossRefGoogle Scholar
  117. Montedoro, G., et al. (1992b). Simple and hydrolyzable phenolic compounds in olive oil. 2. Initial characterization of the hydrolyzable fraction. JAgric Food Chem 40, 1577–1580.CrossRefGoogle Scholar
  118. Montedoro, G., et al. (1993a). Simple and hydrolyzable phenolic compounds in olive oil: Note 3. Spectroscopic characterization of the secoiridoid derivatives. JAgric Food Chem 41, 2228–2234.CrossRefGoogle Scholar
  119. Montedoro, G., et al. (1993b). I potenziali modelli che definiscono la tipicità degli oli extra vergini diolliva. Ind Aliment 32, 618–631.Google Scholar
  120. Montedoro, G., Bertuccioli, M. and Anichini, F. (1978). Aroma analysis of virgin olive oil by head space (volatiles) and extraction (polyphenols) techniques. In Flavor of Foods and Beverages, pp. 246–281. Edited by G. Charalambous and G. E. Inglett. New York: Academic Press.Google Scholar
  121. Montedoro, G. and Cantarelli, C. (1969). Indagini sulle sostanze fenoliche presenti negli oli d’oliva. Riv Ital Sostanze Grasse 46, 3–12.Google Scholar
  122. Morales, M. T., et al. (1995). Virgin olive oil aroma: relationship between volatile compounds and sensory attributes by chemometrics. JAgric Food Chem 43, 2925–2931.CrossRefGoogle Scholar
  123. Morales, M. T., et al. (1998a). Tentative analysis of virgin olive oil aroma by SFE-HRGC-MS. J Chromatogr A 819, 267–275.CrossRefGoogle Scholar
  124. Morales, M. T., et al. (1998b) Analysis of virgin olive oil aroma by SFE-GC-MS. Proceedings 5th International Symposium on Hyphenated Techniques in Chromatography, February 11–13, Brugge, Belgium.Google Scholar
  125. Morales, M. T. and Aparicio, R. (1993a). Optimization by mathematical procedures of two dynamic headspace techniques for quantifying virgin olive oil volatiles. Anal Chim Acta 282, 423–431.CrossRefGoogle Scholar
  126. Morales, M. T. and Aparicio, R. (1993b). Characterizing some European olive oil varieties by volatiles using statistical tools. GrasasAceites 44, 113–115.Google Scholar
  127. Morales, M. T. and Aparicio, R. (1999). Effect of extraction conditions on sensory quality of virgin olive oil. JAm Oil Chem Soc 76, 295–300.CrossRefGoogle Scholar
  128. Morales, M. T., Aparicio, R. and Calvente, J. J. (1996). Influence of olive ripeness on the concentration of green aroma compounds in virgin olive oil. Flavour Fragr J 11, 171–178.Google Scholar
  129. Morales, M. T., Aparicio, R. and Gutiérrez, E. (1992). Técnicas de aislamiento y concentración de volatiles de aceites vegetales. GrasasAceites 43, 164–173.CrossRefGoogle Scholar
  130. Morales, M. T., Aparicio, R. and Rios, J. J. (1994). Dynamic headspace gas chromatographic method for determining volatiles in virgin olive oil. J ChromatogrA 668, 455–462.CrossRefGoogle Scholar
  131. Morales, M. T., Luna, G. and Aparicio, R. (1998). Volatile compounds and virgin olive oil sensory defects. Internal Report IGS-VO-250198. Instituto de la Grasa, Seville, Spain.Google Scholar
  132. Mordret, F., Morin, O. and Coustille, J. L. (1985). Determination des flaveurs de corps gras. Rev Fr Corps Gras 32, 193–200.Google Scholar
  133. Morrison III, W. H., Lyon, B. G. and Robertson, J. A. (1981). Correlation of gas liquid chromatographic volatiles with flavor intensity scores of stored sunflower oils. JAm Oil Chem Soc 58, 23–27.Google Scholar
  134. Nawar, W. W, et al. (1988). A study of the volatile components generated from butter oil by heat. Rev Fr Corps Gras 35, 117–122.Google Scholar
  135. Nergiz, C. and Ünal, K. (1991a). Effect of method of extraction on the total polyphenol, 1,2-diphenol content and stability of virgin olive oil. J Sci Food Agric 56, 79–84.CrossRefGoogle Scholar
  136. Nergiz, C. and Ünal, K. (1991b). Determination of phenolic acids in virgin olive oil. Food Chem 39, 237–240.CrossRefGoogle Scholar
  137. Noble, A. C., et al. (1987). Modification of a standardized system of wine aroma terminology. Am J Enol Vitic 38, 143–146.Google Scholar
  138. Nunez, A. J., Gonzalez, L. E and Janak, J. (1984). Pre-concentration of headspace volatiles for trace organic analysis by gas chromatography. J Chromatogr 300, 127–162.CrossRefGoogle Scholar
  139. Olias, J. M., et al. (1978). Componentes volatiles en el aroma del aceite de oliva virgen. II. Identificación y analisis sensorial de los eluyentes cromatograficos. Grasas Aceites 29, 211–218.Google Scholar
  140. Olias, J. M., et al. (1980). Componentes volatiles en el aroma del aceite de oliva. IV. Su evolución e influencia en el aroma durante el proceso de maduración de los frutos en las variedades Picual y Hojiblanca. GrasasAceites 31, 391–402.Google Scholar
  141. Olias, J. M., et al. (1993). Aroma of virgin olive oil: Biogenesis of the “green” odor notes. JAgric Food Chem 41, 2368–2373.CrossRefGoogle Scholar
  142. Olias, J. M., Del Barrio, A. and Gutiérrez, R. (1977). Componentes volatiles en el aroma del aceite de oliva virgen. I. GrasasAceites 28, 107–112.Google Scholar
  143. Paillard, N., Pitoulis, S. and Mattei, A. (1970). Techniques de preparation el analyse de l’arome de quelques fruits. Lebensm Wiss Technol 3, 107–114.Google Scholar
  144. Papadopoulos, G. and Tsimidou, M. (1992) Rapid method for the isolation of phenolic compounds from virgin olive oil using solid phase extraction. Proceedings 16th International Conference: Group Polyphenols, July 13–16, Lisbon, Portugal, pp. 192–196.Google Scholar
  145. Ragazzi, E. and Veronese, G. (1973a). Indagine sul componenti fenolici degli oli di oliva. JChromatogr 77, 369–375.CrossRefGoogle Scholar
  146. Ragazzi, E. and Veronese, G. (1973b). Quantitative analysis of phenolic compounds after thin layer chromatographic separation. Riv Ital Sostanze Grasse 50, 443–452.Google Scholar
  147. Raghavan, S. K., Reeder, S. K. and Khayat, A. (1989). Rapid analysis of vegetable oil flavor quality by dynamic headspace capillary gas chromatography. JAm Oil Chem Soc 66, 942–947.CrossRefGoogle Scholar
  148. Ramstad, T. and Nestrick, T. J. (1980). Purge vessel design in determinations of volatile organic compounds. Anal Chim Acta 121, 345–348.Google Scholar
  149. Ranalli, A. and Angerosa, E (1996). Integral Centrifuges for olive oil extraction. The qualitative characteristics of products. JAm Oil Chem Soc 73, 417–422.CrossRefGoogle Scholar
  150. Ranalli, A. and Serraiocco, A. (1996). Evaluation of characteristics of olive oil produced by innovative or traditional processing technologies. Riv Ital Sostanze Grasse 73, 303–314.Google Scholar
  151. Reineccius, G. (1993). Biases in analytical flavor profiles introduced by isolation method. In Flavor Measurement, pp. 61–76.Google Scholar
  152. Edited by C. T. Ho and C. H. Manley. New York: Marcel Dekker. Riberau-Gayon, P. (1968). Proprietes chimiques des phenols. Applications aux produits naturels. In Les Composes-Phenoliques des Vegetaux, pp. 28–55. Paris: Dunod. Rijks, J., et al. (1983). Possibilities and limitations of steam distillation-extraction as a pre-concentration technique for trace analysis of organics by capillary gas chromatography. J Chromatogr 279, 395–407.Google Scholar
  153. Rovellini, P., Cortesi, N. and Fedeli, E. (1997). Analysis of flavonoids from Olea europaea by HPLCUV and HPLC-electrospray-MS. Riv Ital Sostanze Grasse 74, 273–279.Google Scholar
  154. Sacchi, R., et al. (1996). A high-field 1H nuclear magnetic resonance study of the minor components in virgin olive oils. JAm Oil Chem Soc 73, 747–758.CrossRefGoogle Scholar
  155. Salami, M., et al. (1995). Formation of F2 isoprostanes in oxidized low density lipoprotein: inhibitory effect of hydroxytyrosol. Pharmacol Res 31, 275–279.CrossRefGoogle Scholar
  156. Salas, J. J. (1999). Ruta de la lipoxigenasa en aceituna: Contribución a la biogenesis del aroma del aceite de oliva. Ph.D. Thesis. Universidad de Sevilla, Seville, Spain.Google Scholar
  157. Schreier, P. (1984) Chromatographic studies of biogenesis of plant volatiles. In Series of Chromatographic Methods, pp. 52–147. Edited by W. Bertsch, W. G. Jennings and R. E. Kaiser. Heidelberg: Hüthig.Google Scholar
  158. Senf, L. and Frank, H. (1990). Thermal desorption of organic pollutants enriched on activated carbon. V. Desorption behaviour and temperature profile. J Chromatogr 520, 131–135.CrossRefGoogle Scholar
  159. Servili, M., et al. (1995). Sensory characterization of virgin olive oil and relationship with headspace composition. J Sci Food Agric 67, 61–70.CrossRefGoogle Scholar
  160. Shahidi, E (1997). Natural antioxidants: an overview. In Natural Antioxidants: Chemistry, Health Effects and Applications, pp. 1–11. Edited by E Shahidi. Champaign, IL: American Oil Chemists’ Society.Google Scholar
  161. Shahidi, E, Janitha, P. K. and Wanasundara, P. D. (1992). Phenolic antioxidants. Crit Rev Food Sci Nutr 32, 67–103.CrossRefGoogle Scholar
  162. Sheabar, E. Z. and Neeman, I. (1988). Separation and concentration of natural antioxidants from the rape of olives. JAm Oil Chem Soc 65, 990–993.CrossRefGoogle Scholar
  163. Singleton, V. L. and Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am JEnol Vitic 16, 144–158.Google Scholar
  164. Snell, E D. and Snell, C. T. (1953). Calorimetric Methods ofAnalysis, 3rd ed. New York: Van Nostrand, D. Co. pp. 104–162, 458–462.Google Scholar
  165. Snyder, J. M. et al. (1988). Comparison of gas chromatographic methods for volatile lipid oxidation compounds in soybean oil. JAm Oil Chem Soc 65, 1617–1620. Google Scholar
  166. Snyder, J. M., Frankel, E. N. and Selke, E. (1985). Capillary gas chromatographic analyses of head-space volatiles from vegetable oils. JAm Oil Chem Soc 62, 1675–1679.CrossRefGoogle Scholar
  167. Snyder, L. R. and Kirkland, J. J. (1979) Introduction to Modern Liquid Chromatography, 2nd ed. New York: Wiley-Interscience, pp. 247–268.Google Scholar
  168. Snyder, J. M. and Mounts, T. L. (1990). Analysis of vegetable oil volatiles by multiple headspace extraction. JAm Oil Chem Soc 67, 800–803.CrossRefGoogle Scholar
  169. Solinas, M. (1987). Analisi HRGC delle sostanze fenoliche di oli vergini di oliva in relazione al grado di maturazione e alla varieta delle olive. Riv Ital Sostanze Grasse 64, 255–262.Google Scholar
  170. Solinas, M., Angerosa, F. and Camera, L. (1988). Evoluzione ossidativa di oli vegetali durante la frittura: determinazione dei componenti volatili mediante HRGC e HPLC. Riv Ital Sostanze Grasse 65, 567–574.Google Scholar
  171. Solinas, M., Angerosa, E and Cucurachi, A. (1985). Connessione tra prodotti di neoformazione ossidativa delle sostanze grasse e insorgenza del diffeto di rancidità all’esame organolettico. Nota I. Riv Soc Ital Sci Aliment 14, 361–368.Google Scholar
  172. Solinas, M., Angerosa, E and Cucurachi, A. (1987). Connessione tra prodotti di neoformazione ossidativa delle sostanze grasse e insorgenza del diffeto di rancidit all’esame organolettico. Nota 2. Determinazione quantitativa. Riv Ital Sostanze Grasse 64, 137–145.Google Scholar
  173. Solinas, M., Angerosa, F. and Marsilio, V. (1988). Indagine su alcuni componenti dell’aroma degli oli vergini di oliva in relazione alla varietà delle olive. Riv Ital Sostanze Grasse 65, 361–368.Google Scholar
  174. Solinas, M. and Cichelli, A. (1981). Sulla determinazione delle sostanze fenoliche dell’olio di oliva. Riv Soc Ital Sci Aliment 10, 159–164.Google Scholar
  175. Solinas, M. and Cichelli, A. (1982). Il dosaggio per GLC e HPLC delle sostanze fenoliche dell’olio di oliva: ruolo ipotetico del tirosolo nell’accertamento della quantita di olio vergine nelle miscele con I rettificati. Riv Soc Ital Sci Aliment 11, 223–230.Google Scholar
  176. Solinas, M., Di Giovacchino, L. and Mascolo, A. (1978). I polifenoli delle olive e dell’olio d’oliva. Nota III: Influenza della temperatura e della durata della gramolatura sul contenuto in polifenoli degli oli. Riv Ital Sostanze Grasse 55, 19–23.Google Scholar
  177. Solinas, M., Marsilio, V. and Angerosa, E (1987). Evoluzione di alcuni componenti dell’aroma degli oli vergini di oliva in relazione al grado di maturazione delle olive. Riv Ital Sostanze Grasse 64, 475–480.Google Scholar
  178. Spencer, C. M., et al. (1988). Polyphenol complexation-some thoughts and observations. Phytochemistry 27, 2397–2409.CrossRefGoogle Scholar
  179. Stahl, E. (1969). Thin Layer Chromatography, pp. 854–905. Berlin: Springer-Verlag.Google Scholar
  180. Swinnerton, J. W, Linnenbom, V. J. and Cheek, C. H. (1962a). Determination of dissolved gases in aqueous solutions by gas chromatography. Anal Chem 34, 483–485.CrossRefGoogle Scholar
  181. Swinnerton, J. W, Linnenbom, V. J. and Cheek, C. H. (1962b). Revised sampling procedure for determination of dissolved gases in solution by gas chromatography. Anal Chem 34, 1509.CrossRefGoogle Scholar
  182. Tesarova, E. and Pacakova, V. (1983). Gas and HPLC of phenols. Chromatographia 17, 269–284.CrossRefGoogle Scholar
  183. Tressl, R. and Drawert, E. (1973). Biogenesis of banana volatiles. JAgric Food Chem 21, 560–565.CrossRefGoogle Scholar
  184. Tsimidou, M., et al. (1996). On the determination of minor phenolic acids of virgin olive oil by RPHPLC. GrasasAceites 47, 151–157.CrossRefGoogle Scholar
  185. Tsimidou, M., Papadopoulos, G. and Boskou, D. (1992a). Analisi HRGC delle sostanze fenoliche di oli vergini di oliva in relazione al grado di maturazione e alla varieta delle olive. Food Chem 44, 53–60.CrossRefGoogle Scholar
  186. Tsimidou, M., Papadopoulos, G. and Boskou, D. (1992b). Phenolic compounds and stability of virgin olive oil-Part I. Food Chem 45, 141–144.CrossRefGoogle Scholar
  187. Ullrich, E. and Grosch, W. (1988). Flavour deterioration of soya-bean oil: Identification of intense odour compounds formed during flavour reversion. Fat Sci Technol 90, 332–336.Google Scholar
  188. Vacca, V, et al. (1993). Primo approccio alla caratterizzazione dei composti fenolici di oli vergini di oliva della Sardegna: Elaborazioni statistiche multivariate dei risultati in HPLC. Riv Rai Sostanze Grasse 70, 595–599.Google Scholar
  189. Van der Hijden, H. T. W. M. and Born, I. J. (1996). Enzymes involved in the metabolic pathway leading to 3-methylbutanal in tomato fruit. In Flavor Science. Recent Developments, pp. 130–133. Edited by A. J. Taylor and D. S. Mottram. Cambridge: The Royal Society of Chemistry.Google Scholar
  190. Vazquez Roncero, A. (1978). Les polyphenols de l’huile d’olive et leur influence suries caracteristiques de l’huile. Rev Fr Corps Gras 25, 21–26.Google Scholar
  191. Vazquez Roncero, A., Graciani Constante, E. and Maestro Duran, R. (1974). Componentes fenólicos de la aceituna. I. Polifenoles de la pulpa. GrasasAceites 25, 269–279.Google Scholar
  192. Vazquez Roncero, A. and Janer del Valle, M. L. (1978). Evolución de los polifenoles durante el aderezo de aceitunas verdes. II Cambios en los polifenoles totales. GrasasAceites 29, 23–27.Google Scholar
  193. Vazquez Roncero, A., Janer del Valle, C. and Janer del Valle, M. L. (1975). Polifenoles naturales y estabilidad del aceite de oliva. GrasasAceites 26, 14–18.Google Scholar
  194. Vazquez Roncero, A., Janer del Valle, M. L. and Janer del Valle, C. (1973). Determinación de los polifenoles totales del aceite de oliva. Grasas Aceites 24, 350–355.Google Scholar
  195. Vazquez Roncero, A., Janer del Valle, M. L. and Janer del Valle, C. (1976). Componentes fenólicos de la aceituna III. Polifenoles del aceite. GrasasAceites 27, 185–191.Google Scholar
  196. Walter, W. M. Jr., Fleming, H. P. and Etchells, J. L. (1973). Preparation of antimicrobial compounds by hydrolysis of oleuropein from green olives. Appl Microbiol 26, 773–776.Google Scholar
  197. Wang, J., Reviejo, J. and Mannino, S. (1992). Organic phase enzyme electrode for the determination of phenols in olive oils. Anal Lett 28, 1399–1409.CrossRefGoogle Scholar
  198. Warner, K. and Frankel, E. N. (1985). Flavor stability of soybean oil based on induction periods for the formation of volatile compounds by gas chromatography. JAm Oil Chem Soc 62, 100–103.CrossRefGoogle Scholar
  199. Warner, K., Frankel, E. N. and Moulton, K. J. (1988). Flavor evaluation of crude oil to predict the quality of soybean oil. JAm Oil Chem Soc 65, 386–391.CrossRefGoogle Scholar
  200. Werkhoff, P. and Bretschneider, W. (1987). Dynamic headspace gas chromatography: Concentration of volatile components after thermal desorption by intermediate cryofocusing in a cold trap. I. Principle and applications. J Chromatogr 405, 87–98.CrossRefGoogle Scholar
  201. Weurman, C. (1969). Isolation and concentration of volatiles in food odor research. JAgric Food Chem 17, 370–384.CrossRefGoogle Scholar
  202. Wilkins, C. K. (1973). Chromatography of tea polyphenols on Sephadex columns as a method of estimation of molecular size. J Chromatogr 87, 250–253.CrossRefGoogle Scholar
  203. Wiseman, S. A., et al. (1996). Dietary non-tocopherol antioxidants present in extra virgin olive oil increase the resistance of low density lipoproteins to oxidation in rabbits. Atherosclerosis 120, 15–23.CrossRefGoogle Scholar
  204. Wyatt, D. M. (1987). Dynamic headspace gas chromatography/mass spectrometry technique for determining volatiles in ambient stored vegetable oils. J Chromatogr Sci 25, 257–261.CrossRefGoogle Scholar
  205. Wyllie, S. G., et al. (1995). Key aroma compounds in melons. In Fruit Flavors: Biogenesis, Characterization and Authentication, pp. 248–257. Edited by R. L. Rouseff and M. M. Leahy. Washington, DC: American Chemical Society.Google Scholar
  206. Wyllie, S. G., et al. (1996). Biochemical pathways for the formation of esters in ripening fruit. In Flavor Science. Recent Developments, pp. 52–57. Edited by A. J. Taylor and D. S. Mottram. Cambridge: The Royal Society of Chemistry.Google Scholar
  207. Yangkyo, P. S., et al. (1995). Characterization of a C-5,13-cleaving enzyme of 13(S)-hydroperoxide of linolenic acid by soybean seed. Plant Physiol 108, 1211–1218.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Maria Teresa Morales
  • Maria Tsimidou

There are no affiliations available

Personalised recommendations