Sensory Quality of Olive Oils

  • Franca Angerosa

Abstract

Generally the sensory quality of a food represents its acceptability and desirability. It is determined by a set of positive characteristics evaluated through the sense organs. Color, odor, taste, and tactile sensations have true physiologic functions as they stimulate the appetite and the gratifying effect, and make acceptable foods.

Keywords

Sensory Characteristic Sensory Quality Sensory Profile Generalize Procrustes Analysis Flavor Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albi, M. A. and Gutiérrez, E. (1991). Study of the precision of an analytical taste panel for sensory evaluation of virgin olive oil. Establishment of criteria for the elimination of abnormal results. J Sci Food Agric 54, 255–267.CrossRefGoogle Scholar
  2. Agro–Industry Research (AIR) (1999). Final Report of European Research ProjectAIR3–CT94–1967. Olive oil flavour and aroma: Biochemistry and chemistry of sensory factors affecting consumer appreciation and their analysis by artificial intelligence. The Commission of the European Communities.Google Scholar
  3. Angerosa, E, et al. (1995). GC-MS evaluation of phenolic compounds in virgin olive oil. JAgric Food Chem 43, 1802–1807.CrossRefGoogle Scholar
  4. Angerosa, E, et al. (1996a). Sensory evaluation of virgin olive oils by artificial neural network processing of dynamic head-space gas chromatographic data. J Sci FoodAgric 72, 323–328.CrossRefGoogle Scholar
  5. Angerosa, E, et al. (1996b). Characterization of phenolic and secoiridoid aglycons present in virgin olive oil by gas chromatography-chemical ionization mass spectrometry. J Chromatogr 736, 195–203.CrossRefGoogle Scholar
  6. Angerosa, E, et al. (1997a). Relationship between aroma components and malaxation time of olive paste. Presented at 3rd International Symposium on Olive Growing. Chania, Crete.Google Scholar
  7. Angerosa, E, et al. (1997b). Olive oil off-odour compounds produced by Aspergillus and Penicillium. Presented at 3rd International Symposium on Olive Growing. Chania, Crete.Google Scholar
  8. Angerosa, E and Di Giacinto, L. (1992). Oxidation of virgin olive oils in relation to metals: Iron and copper. Note II. Proceedings of the International Congress “Olive Oil Quality,” pp. 253–256. Firenze, Italy.Google Scholar
  9. Angerosa, E and Di Giacinto, L. (1995). Caratteristiche di qualità dell’olio di oliva vergine in relazione ai metodi di fragatura. Nota II. Riv Ital Sostanze Grasse 72, 1–4.Google Scholar
  10. Angerosa, E and Di Giovacchino, L. (1996). Natural antioxidants of virgin olive oil obtained by two and tri-phase centrifugal decanters. Grasas Aceites 47, 247–254.CrossRefGoogle Scholar
  11. Angerosa, E, Di Giacinto, L. and d’Alessandro, N. (1997). Relationship between aroma components and malaxation time of olive paste. J High Resol Chromatogr 20, 507–510.CrossRefGoogle Scholar
  12. Angerosa, F., Di Giacinto, L. and De Mattia, G. (1993). Shelf-life of bottled extra virgin olive oils. Riv Merceol 32, 243–259.Google Scholar
  13. Angerosa, E, Di Giacinto, L. and Solinas, M. (1990) Influenza dello stoccaggio in massa delle olive sull’aroma degli oli di risulta: Valutazione del difetto di `riscaldo’ mediante analisi HPLC e GLC dei composti volatili. Riv Merceol 29, 275–294.Google Scholar
  14. Angerosa, E, Lanza, B. and Marsilio, V. (1996). Biogenesis of “fusty” defect in virgin olive oils. Grasas Aceites 47, 142–150.CrossRefGoogle Scholar
  15. Angerosa, E and Solinas, M. (1990). Crushing influence on the quality characteristics of virgin olive oil. Proceedings of International Seminar “Olive Oil and Table Olives: Technological Aspects and Quality,” pp. 135–145. Città S. Angelo, Italy.Google Scholar
  16. Aparicio, R., et al. (1994). Relationship between the COI test and other sensory profiles by statistical procedures. Grasas Aceites 45, 26–41.CrossRefGoogle Scholar
  17. Aparicio, R., Gutiérrez, E and Rodriguez, J. (1991). A chemometrics study of analytical panels in virgin olive oil. An approach for evaluating panels in training. Grasas Aceites 42, 202–210.CrossRefGoogle Scholar
  18. Aparicio, R. and Morales, M. T. (1994). Optimization of a dynamic headspace technique for quantifying virgin olive oil volatiles. Relationship among sensory attributes and volatile peaks. Food Qual Pref 5, 109–114.CrossRefGoogle Scholar
  19. Aparicio, R., Morales, M. T. and Alonso, M. V. (1996). Relationship between volatile compounds and sensory attributes of olive oils by sensory wheel. JAm Oil Chem Soc 73, 1253–1264.Google Scholar
  20. Bartoshuk, L. M. (1993). The biological basis of food perception and acceptance. Food Qual Pref 4, 21–32.CrossRefGoogle Scholar
  21. Bartoshuk, L. M., et al. (1992). PROP supertasters and the perception of sweetness and bitterness. Chem Senses 17, 594–612.Google Scholar
  22. Bate-Smith, E. C. (1973). Haemananalysis of tannins. The concept of relative astringency. Phytochemistry 12, 907–912.CrossRefGoogle Scholar
  23. Beal, A. D. and Mottram, D. S. (1993). An evaluation of the aroma characteristics of malted barley by free-choice profiling. JSci FoodAgric 61, 17–22.CrossRefGoogle Scholar
  24. Bedoukian, P. Z. (1971). The seven primary hexenols and their olfactory characteristics. JAgric Food Chem 19, 1111–1114.CrossRefGoogle Scholar
  25. Benedict, J., Steenkamp, E. M. and Van Trijp, H. C. M. (1988). Free-choice profiling in cognitive food acceptance research. In Food Acceptability, pp. 363–378. Edited by D. M. H. Thomson. London: Elsevier Applied Science.Google Scholar
  26. Boskou, D. (1996) Olive oil composition. In Olive Oil Chemistry and Technology, pp. 59–60. Edited by D. Boskou. Champaign, IL: AOCS Press.Google Scholar
  27. Breslin, P. A. S. (1996). Interactions among salty, sour and bitter compounds. Trend Food Sci Technol 71, 390–399.CrossRefGoogle Scholar
  28. Caincross, S. E. and Sjöström, L. B. (1950). Flavor profiles: A new approach to flavor problems. Food Technol 4, 308–311.Google Scholar
  29. Camera, L. and Solinas, M. (1990). Identification of some volatile compounds of olive oil by GLC-MS. Proceedings of International Seminar “Olive Oil and Table Olives: Technology Aspects and Quality,” pp. 153–168. Città S. Angelo, Italy.Google Scholar
  30. Chambers, E. and Smith, E. A. (1993). Effects of testing experience on performance of trained sensory panelists. JSensory Stud 8, 156–166.Google Scholar
  31. Civille, G. C. and Lawless, H. T. (1986). The importance of language in describing perceptions. J Sensory Stud 7, 203–215.CrossRefGoogle Scholar
  32. Clapperton, J. F. and Piggott, J. R. (1979). Flavor characterization by trained and untrained assessors. Jlnst Brewing 85, 275–277.CrossRefGoogle Scholar
  33. Clydesdale, F. M. (1993). Color as a factor in food choice. Crit Rev Food Sci Nutr 33, 83–101.CrossRefGoogle Scholar
  34. Cucurachi, A. (1969). L’esame nel visible degli oli d’oliva vergini, dei rettificati e delle miscele. Riv Ital Sostanze Grasse 46, 449–458.Google Scholar
  35. Di Giovacchino, L., Solinas, M. and Miccoli, M. (1994). Effect of extraction systems on the quality of virgin olive oil. JAm Oil Chem Soc 71, 1189–1194.CrossRefGoogle Scholar
  36. Erickson, R. P. and Covey, E. (1980). On the singularity of taste sensations: What is a taste primary? Physiol Behav 25, 527–533.CrossRefGoogle Scholar
  37. European Communities (EC) (1991). Official Journal of the Commission of the European Communities. Regulation No. 2568/91, L248, September 5, 1991.Google Scholar
  38. European Communities (EC) (1995). Official Journal of the Commission of the European Communities. Regulation No. 2527/95, October 27, 1995.Google Scholar
  39. Fedeli, E. (1993). La valutazione organolettica degli oli vergini di oliva. Riv Ital Sostanze Grasse 70, 81–85Google Scholar
  40. Flath, R. A., Forrey, R. R. and Guadagni, D. G. (1973). Aroma components of olive oil. JAgric Food Chem 21, 948–952.CrossRefGoogle Scholar
  41. Fox, A. L. (1931). Six in ten “tasteblind” to bitter chemical. Science News Letter 9, 249–252.Google Scholar
  42. Frances, R. J. and Piggott, J. R. (1991/2). Free-choice profiling in consumer research. Food Qual Pref3,129–134.Google Scholar
  43. Frankel, E. N. (1982). Volatile lipid oxidation products. Prog Lipid Res 22, 1–33.CrossRefGoogle Scholar
  44. Gandul-Rojas, B. and Mínguez-Mosquera, M. I. (1996). Chlorophyll and carotenoid composition in virgin olive oils from various Spanish olive varieties. J Sci Food Agric 72, 31–39.CrossRefGoogle Scholar
  45. Gariboldi, P. Jommi, G. and Verrotta, L. (1986). Secoiridoids from Olea europaea. Phytochemistry 25 865–869.Google Scholar
  46. Gilbert, A. N. and Wysocki, C. J. (1987). The smell survey. National Geographic 172, 514–518.Google Scholar
  47. Gillette, M. (1984). Applications of descriptive analysis. JFood Protection 47, 403–409.Google Scholar
  48. Guinard, J. X., Pangbom, R. M. and Lewis, M. J. (1986). The time course of astringency in wine upon repeated ingestion. Am JEnol Vitic 37, 184–189.Google Scholar
  49. Guth, H. and Grosh, W. (1993). Quantitation of potent odorants of virgin olive oil by stable isotope dilution assay. JAm Oil Chem Soc 70, 513–518.CrossRefGoogle Scholar
  50. Gutiérrez Gonzalez-Quijano, R. (1989). Methodologie d’évaluation des qualités organoleptiques de l’huile d’olive vierge. Proceedings of the International Congress “Chevreul,” pp. 534–541. Angers, France.Google Scholar
  51. Gutiérrez Rosales, E, Alba Risco, J. M. and Gutiérrez Gonzalez-Quijano, R. (1984). Selección de catadores mediante el método de clasificación por intensidad. Grasas Aceites 35, 310–314.Google Scholar
  52. Gutiérrez Rosales, E, Cabrera, J. and Gutiérrez Gonzalez-Quijano, R. (1974). Consideraciones sobre las ventajas del “Panel test” en la evaluación organoléptica de los alimentos. Aplicación al aceite de oliva virgen. Grasas Aceites 25, 111–116.Google Scholar
  53. Guy, C., Piggott, J. R. and Marie, S. (1989). Consumer profiling of scotch whisky. Food Qual Pref 1, 69–73.CrossRefGoogle Scholar
  54. Hatanaka, A., et al. (1992). Odor-structure relationships in n-hexanols and n-hexenales. ZNaturforsch 47c, 183–189.Google Scholar
  55. Hatanaka, A., Kajiwara, T. and Sekiya, J. (1987). Biosynthetic pathway for C6 aldehydes formation from linolenic acid in green leaves. Chem Phys Lipids 44, 341–361.CrossRefGoogle Scholar
  56. International Olive Oil Council (IOOC) (1987). Method COI/T.20/Doc. No. 3, Method for the sensory evaluation of virgin olive oil. Madrid, Spain.Google Scholar
  57. International Olive Oil Council (IOOC) (1996). Method COI/T.20/Doc. No. 15/Rev. 1, Revised method for the sensory evaluation of virgin olive oil. Madrid, Spain.Google Scholar
  58. International Union of Pure and Applied Chemistry (IUPAC) (1992). Spectrometric determination of the color. Method 2.103. In Standard Methods for the Analysis of Oils, Fats and Derivatives, 7th ed., pp. 36–40. Edited by A Dieffeanbacher and W. D. Pocklington. Oxford, England: Blackwell Scientific Publications.Google Scholar
  59. Ishii, R. and O’Mahony, M. (1987). Defining a taste by a single standard: Aspects of salty and umami tastes. JFood Sci 52, 1405–1409.CrossRefGoogle Scholar
  60. Ishii, R. and O’Mahony, M. (1991). Use of a multiple standards to define sensory characteristics for descriptive analysis: Aspects of concept formation. JFood Sci 56, 838–842.CrossRefGoogle Scholar
  61. Jones, P. N. and McLachlan, G. J. (1991). Fitting mixture distributions to phenylthiocarbamide (PTC) sensitivity. Am JHum Genet 48, 117–120.Google Scholar
  62. Kalmus, H. (1958). Improvements in the classification of the taster genotypes. Ann Hum Genet 22, 222–230.CrossRefGoogle Scholar
  63. Kalmus, H. (1971). The genetics of taste. In Taste, pp. 165–178. Edited by L. M. Beilder. New York: Springer Verlag.Google Scholar
  64. Kroll, B. J. (1990). Evaluating rating scales for sensory testing with children. Food Technol 44, 82–88.Google Scholar
  65. Kubo, I. and Matsumoto, A. (1984). Molluscicides from Olea europaea and their efficient isolation by countercurrent chromatographies. JAgric Food Chem 32, 687–688.CrossRefGoogle Scholar
  66. Lawless, H. T. (1986). Sensory interactions in mixtures. J Sensory Stud 1, 259–274.CrossRefGoogle Scholar
  67. Lawless, H. T. (1991). Bridging the gap between sensory science and product evaluation. In Sensory Science Theory and Applications in Foods, pp. 353–393. Edited by Institute of Food Technologists Chicago. New York: Marcel Dekker.Google Scholar
  68. Lea, A. G. H. and Arnold, G. M. (1978). The phenolics of ciders: Bitterness and astringency. JSci Food Agric 29, 478–483.CrossRefGoogle Scholar
  69. Lee, C. B. and Lawless, H. T. (1991). Time-course of astringent sensations. Chem Senses 16, 225–238.CrossRefGoogle Scholar
  70. Lyon, D. H. and Watson, M. P. (1994). Sensory profiling: A method for describing the sensory characteristics of virgin olive oil. Grasas Aceites 45, 20–25.CrossRefGoogle Scholar
  71. Maga, J. A. (1974). Influence of color on taste thresholds. Chem Senses Flavor 1, 115–117.CrossRefGoogle Scholar
  72. Marsilio, V. and Spotti, E. (1987). Investigation into mould contamination of dried black table olives. Ind Conserve 62, 287–291.Google Scholar
  73. McBride, R. L. and Finley, D. C. (1989). Perception of taste mixtures by experienced and novice assessors. JSensory Stud 3, 237–248.CrossRefGoogle Scholar
  74. McEwan, J. A. (1994). Consumer attitudes and olive oil acceptance: The potential consumer. Grasas Aceites 45, 9–15.CrossRefGoogle Scholar
  75. McEwan, J. A., Colwill, J. S. and Thomson, D. H. M. (1989). The application of two free-choice profileGoogle Scholar
  76. methods to investigate the sensory characteristics of chocolate. J Sensory Stud 3 271–286. Google Scholar
  77. McEwan, J. A., Moore, J. D. and Colwill, J. S. (1989). The sensory characteristics of Cheddar cheese and their relationship with acceptability. JSoc Dairy Technol 42, 112–117.CrossRefGoogle Scholar
  78. Miller, I.J. Jr and Reedy, E E. Jr (1990). Quantification of fungiform papillae and taste pores in living human subjects. Chem Senses 15, 281–294.CrossRefGoogle Scholar
  79. Minguez-Mosquera, M. I., et al. (1991). Color-pigment correlation in virgin olive oil. JAm Oil Chem Soc 68, 332–336.Google Scholar
  80. Minguez-Mosquera, M. I. and Garrido-Fernandez, J. (1989). Chlorophyll and carotenoid presence in olive fruit (Olea europaea). JAgric Food Chem 37, 1–7.CrossRefGoogle Scholar
  81. Mojet, J. and de Jong, S., (1994). The sensory wheel of virgin olive oil. Grasas Aceites, 45, 42–47. Montedoro, G. (1992). I fattori tecnologici responsabili della qualità degli oli vergini di oliva. Uliveto 5 (20), 6–11.Google Scholar
  82. Montedoro, G., et al. (1993). Simple and hydrolyzable compounds in virgin olive oil. 3. Spectroscopic characterizations of secoiridoid derivatives. JAgric Food Chem 41, 2228–2234.Google Scholar
  83. Montedoro, G., Baldioli, M. and Servili, M. (1992). Sensory and nutritional relevance of phenolic compounds in olive oil. Giornale Ital Nutriz Clin Preven 1, 19–32.Google Scholar
  84. Montedoro, G. and Garofolo, L. (1984). Caratteristiche qualitative degli oli vergini di oliva. Influenza di alcune variabili: Varietà, ambiente, conservazione, estrazione, condizionamento del prodotto finito. Riv Ital Sostanze Grasse 61, 157–168.Google Scholar
  85. Montedoro, G. and Servili, M. (1992). I parametri di qualità dell’olio di oliva de i fattori agronomici e tecnologici che li condizionano. Riv Ital Sostanze Grasse 69, 563–573.Google Scholar
  86. Morales, M. T., et al. (1995). Virgin olive oil aroma. Relationship between volatile compounds and sensory attributes by chemometrics. JAgric Food Chem 43, 2925–2931.CrossRefGoogle Scholar
  87. Morales, M. T. and Aparicio, R. (1993). Characterizing some European olive oil varieties by volatiles using statistical tools. Grasas Aceites, 44, 113–115.Google Scholar
  88. Morales, M. T., Aparicio, R. and Calvente, J. J. (1996). Influence of olive ripeness on the concentration of green aroma compounds in virgin olive oil. Flavour Fragr J11, 171–178.Google Scholar
  89. Morales, M. T., Aparicio, R. and Rios, J. J. (1994). Dynamic headspace gas chromatographic method for determining volatiles in virgin olive oil. J ChromatogrA 668, 455–462.CrossRefGoogle Scholar
  90. Moruzzi, G. (1977a). Il gusto. In Fisiologia della vita di relazione, pp. 382–389. Edited by UTET. Torino, Italy: UTET.Google Scholar
  91. Moruzzi G. (1977b). L’olfatto. In Fisiologia della vita di relazione, pp. 373–381. Edited by UTET. Torino, Italy: UTET.Google Scholar
  92. Naish, M., Clifford, M. N. and Birch, G. G. (1993). Sensory astringency of 5-O-caffeoylquinic acid, tannic acid and grape-seed tannin by a time-intensity procedure. JSci Food Agric 61, 57–64.CrossRefGoogle Scholar
  93. Nakagawa, M., Mizuma, K. and Inui, T. (1996). Changes in taste perception following mental or physical stress. Chem Senses 21, 195–200.CrossRefGoogle Scholar
  94. Noble, A. C. (1996). Taste-aroma interactions. Trends Food Sci Technol 7, 439–444.CrossRefGoogle Scholar
  95. Norme, Grassi e Derivati. (NGD) (1968). Norme Grassi e Derivati, Ba II - 2. Edited by Stazione Sperimentale per le industrie degli oli e dei grassi. Milano, Italy.Google Scholar
  96. O’Connell, R. J., et al. (1989). Individual differences in the quantitative and qualitative responses of human subjects to various odors. Chem Senses 14, 293–302CrossRefGoogle Scholar
  97. O’Mahony, M. (1991). Descriptive analysis and concept alignment. In Sensory Science Theory and Applications in Food, pp. 233–267. Edited by Institute of Food Technologists, Chicago. New York: Marcel Dekker.Google Scholar
  98. O’Mahony, M. (1995). Who told you the triangle test was simple? Food Qual Pref6, 227–238.Google Scholar
  99. Olías, J. M., et al. (1993). Aroma of virgin olive oil: Biogenesis of the “green” odor notes. JAgric Food Chem 41, 2368–2373.CrossRefGoogle Scholar
  100. Oreskovich, D. C., Klein, B. P. and Sutherland, J. W. (1991). Procrustes Analysis and its applications to free-choice and other sensory profiling. In Sensory Science Theory and Applications in Foods, pp. 353–393. Edited by Institute of Food Technologists, Chicago. New York: Marcel Dekker.Google Scholar
  101. Pagliarini, E., Bertuccioli, M. and Abbà, S. (1994). Consumer attitudes and olive oil acceptance: The traditional consumer. Grasas Aceites 45, 16–19.CrossRefGoogle Scholar
  102. Panizzi, L., Scarpati, M. L. and Oriente, E. G. (1960). Structure of oleuropein, bitter glycoside with hypotensive action of olive oil. Note II. Gazz Chim Ital 90, 1449–1485.Google Scholar
  103. Pelosi, P. (1994). Odorant-binding proteins. Crit Rev Biochem Mol Biol 29, 199–228.CrossRefGoogle Scholar
  104. Peryam, D. R. and Pilgrim, F. J. (1957). Hedonic scale method of measuring food preferences. Food Technol 11, 9–14.Google Scholar
  105. Piggott, J. R. (1990). Relating sensory and chemical data to understand flavor. J Sensory Stud 4, 261–272.CrossRefGoogle Scholar
  106. Piggott, J. R., Sheen, M. R. and Apostolidou, S. G. (1990). Consumers’ perceptions of whiskies and other beverages. Food Qual Pref 2, 177–185.Google Scholar
  107. Ragazzi, E., Veronese, G. and Guiotto, A. (1973). Demethyloleuropein, a new glycoside isolated from ripe olives. Ann Chim 63, 13–20.Google Scholar
  108. Ranalli, A. and Angerosa, E (1996). Integral centrifuges for olive oil extraction: The qualitative characteristics of products. JAm Oil Chem Soc 73, 417–422.CrossRefGoogle Scholar
  109. Raney, B. A. (1986). Importance of reference standards in training panelists. J Sensory Stud 1, 149–154.CrossRefGoogle Scholar
  110. Ranzani, C. (1994). Olive oil quality and EEC regulations. GrasasAceites 45, 1–4.CrossRefGoogle Scholar
  111. Roessler, E. B., et al. (1978). Expanded statistical tables for estimating significance in paired-preference, paired-difference, duo-trio and triangle tests. JFood Sci 43, 940–947.Google Scholar
  112. Rossiter, K. J. (1996). Structure-odor relationships. Chem Rev 96, 3201–3240.CrossRefGoogle Scholar
  113. Servili, M., et al. (1995). Sensory characterization of virgin olive oil and relationship with headspace composition. JSci FoodAgric 67, 61–70.CrossRefGoogle Scholar
  114. Shepherd, R., Griffiths, N. M. and Smith, K. (1988). The relationship between consumer preferences and trained panel responses. J Sensory Stud 3, 19–35.CrossRefGoogle Scholar
  115. Solinas, M. (1984–1987). L’evaluation de les caracteristiques organoleptiques d’hulie d’olive vierge. Ann Ist Sper Elaiot 10,unpaginated.Google Scholar
  116. Solinas, M. (1987). Analisi HRGC delle sostanze fenoliche di oli vergini di oliva in relazione al grado di maturazione e alla varietà delle olive. Riv Ital Sostanze Grasse 64, 255–262.Google Scholar
  117. Solinas, M., Angerosa, E and Cucurachi, A. (1987). Connessione tra i prodotti di neoformazione ossidativa delle sostanze grasse e insorgenza dei difetto di rancidità all’esame organolettico. Nota 2. Riv Ital Sostanze Grasse 64, 137–145.Google Scholar
  118. Solinas, M., Angerosa, E and Marsilio, V. (1988) Indagine su alcuni componenti dell’aroma degli oli vergini di oliva in relazione alla varieta delle olive. Riv Ital Sostanze Grasse 65, 361–368.Google Scholar
  119. Solinas, M., Marsilio, V. and Angerosa, E (1987). Evoluzione di alcuni componenti dell’aroma degli oli vergini di oliva in relazione al grado di maturazione delle olive. Riv Ital Sostanze Grasse 64, 475–480.Google Scholar
  120. Stone, H., et al. (1974). Sensory evaluation by quantitative descriptive analysis. Food Technol 28, 24–34.Google Scholar
  121. Stone, H., Siedel, J. H. and Bloomquist, J. (1980). Quantitative descriptive analysis. Cereal Foods World 25, 642–644.Google Scholar
  122. Tiscornia, E., Forina, M. and Evangelisti, E (1982). Composizione dell’olio di oliva e sue variazioni indotte dal processo di rettificazione. Riv Ital Sostanze Grasse 59, 519–556.Google Scholar
  123. Vick, B. A. and Zimmerman, D. C. (1987). The lipoxygenase pathway. In The Biochemistry of Plants, Vol. 9, pp. 53–90. Edited by P. K. Stumpf and E. E. Conn. New York: Academic Press.Google Scholar
  124. Voirol, E. and Daget, N. (1986). Comparative study of nasal and retronasal olfactory perception. Lebensm-Wass-Technol 19, 316–319.Google Scholar
  125. William, A. A. and Arnold, G. M. (1985). A comparison of the aromas of six coffees characterized by conventional profiling, free-choice profiling and similarity scaling methods. J Sci Food Agric 36, 204–214.CrossRefGoogle Scholar
  126. William, A. A. and Langron, S. P. (1984). The use of free-choice profiling for the evaluation of commercial ports. J Sci Food Agric 35, 558–568.Google Scholar
  127. Withehead, M. C., Breeman, C. S. and Kinsella, B. A. (1985). Distribution of taste and general sensory nerve endings in fungiform papillae of the hamster. Am JAnatomy 173, 185–201.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Franca Angerosa

There are no affiliations available

Personalised recommendations