The Intermediate Optical System of Laser-Scanning Confocal Microscopes

  • Ernst H. K. Stelzer


This text explains some of the basics of intermediate optical systems in confocal microscopes. Most of the considerations are very simple and based on geometrical optics. Therefore, the author does not present unnecessary mathematics. The simple calculations that are part of the text should be sufficient to understand which calculations are relevant for the design of confocal microscopes.


Microscope Objective Object Plane Dichroic Mirror Confocal Fluorescence Microscope Optical Arrangement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agard, D., and Sedat J., 1983 Three-dimensional architecture of a polytene nucleus, Nature 302:676–681.PubMedCrossRefGoogle Scholar
  2. Bacallao, R., and Stelzer, E.H.K., 1989, Preservation of biological specimens for observation in a confocal fluorescence microscope and operational principles of confocal fluorescence microscopy, Methods Cell Bio. 31:437–452.CrossRefGoogle Scholar
  3. Brakenhoff, G.J., Blom, P., and Barends, P., 1979, Confocal scanning light microscopy with high aperture immersion lenses, J. Microsc. 117:219–232.CrossRefGoogle Scholar
  4. Carlsson, K., and Liljeborg, A., 1989, A confocal laser microscope scanner for digital recording of optical serial sections, J. Microsc. 153:171–180.PubMedCrossRefGoogle Scholar
  5. Denk, W., Strickler, J. H., and Webb, W. W., 1990, Two-photon laser scanning fluorescence microscopy, Science 248:73–76.PubMedCrossRefGoogle Scholar
  6. Draaijer, A., and Houpt, P.M., 1988, A standard video-rate confocal laser-scanning reflection and fluorescence microscope, Scanning 10:139–145.CrossRefGoogle Scholar
  7. Fay, F.S., Carrington, W., and Fogarty, K.E., 1989, Three-dimensional molecular distribution in single cells analysed using the digital imaging microscope, J. Microsc. 153:133–149.PubMedCrossRefGoogle Scholar
  8. Goldstein, S., 1989, A video rate confocal laser beam scanning light microscope using an image dissector, J. Microsc. 153:Rp1–Rp2.CrossRefGoogle Scholar
  9. Goodman, J.W., 1968, Introduction to Fourier Optics, McGraw-Hill, San Francisco.Google Scholar
  10. Hiraoka, Y., Sedat, J.W., and Agard, D.A., 1987, The use of a charge-coupled device for quantitative optical microscopy of biological structures, Science 238:36–41.PubMedCrossRefGoogle Scholar
  11. Marsman, H.J.B., Stricker, R., Wijnaendts-van-Resandt, R.W., Brakenhoff, G.J., and Blom, P., 1983, Mechanical scan system for microscopic applications, Rev. Sci. Instrum. 54:1047–1052.CrossRefGoogle Scholar
  12. Melles Griot Optics Guide 5 (Referred to as MG5 in text), 1990. The catalogue from Melles Griot is very informative and contains numerous excellent comments on optical elements and performance characteristics.Google Scholar
  13. Minsky, M., 1961, U.S. Patent #3013467, Microscopy Apparatus.Google Scholar
  14. Minsky, M., 1988, Memoir on inventing the confocal scanning microscope, Scanning 10:128–138.CrossRefGoogle Scholar
  15. Pawley, J.B., Amos, W.B., Dixon, A., and Brelje, T.C., 1993, Simultaneous, non-interfering, collection of optimal fluorescent and backscattered light signals on the MRC-500/600, Proc. Microsc. Soc. America, 51:156–157.Google Scholar
  16. Petráň, M., Hadravsky, M., Egger, M.D., and Galambos, R., 1968, Tandem-scanning reflected-light microscope, J. Opt. Soc. Am. 58:661–664.CrossRefGoogle Scholar
  17. Schröder, G., 1992, Naumann/Schröder: Bauelemente der Optik—Taschenbuch der technischen Optik, Carl Hanser, München.Google Scholar
  18. Stelzer, E.H.K., and Wijnaendts-van-Resandt, R.W., 1985, Applications of fluorescence microscopy in three dimensionsmicrotomoscopy, SPIE 602:63–70.CrossRefGoogle Scholar
  19. Stelzer, E.H.K., Stricker, R., Pick, R., Storz, C., and Hänninen, P., 1988, Confocal fluorescence microscopes for biological research, SPIE 1028:146–151.CrossRefGoogle Scholar
  20. Stelzer, E. H. K., Hell, S., Lindek, S., Stricker, R., Pick, R., Storz, C., Ritter, G., and Salmon, N., 1994, Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume., Opt. Commun. 104:223–228.CrossRefGoogle Scholar
  21. Streibl, N., 1984, Depth transfer by an imaging system, Optica Acta 31:1233–1241.CrossRefGoogle Scholar
  22. van der Voort, H.T.M., and Brakenhoff, G.J., 1988, Modelling of 3-D confocal imaging at high numerical apertur in fluorescence, SPIE 1028:39–44.CrossRefGoogle Scholar
  23. Wilke, V., 1985, Optical scanning microscopy—the laser scan microscope, Scanning 7:88–96.CrossRefGoogle Scholar
  24. Wilson, T., and Carlini, A.R., 1987, Size of the detector in confocal imaging systems, Optik 72:109–114.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Ernst H. K. Stelzer
    • 1
  1. 1.Cell Biophysics ProgrammeEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany

Personalised recommendations