Laser Sources for Confocal Microscopy

  • Enrico Gratton
  • Martin J. vandeVen

Abstract

In this chapter we describe the characteristic properties of a number of lasers commonly used in fluorescence microscopy. We concentrate on the characteristics of lasers in relation to their use as an illumination source. Lasers have a number of unique properties compared to other sources emitting electromagnetic radiation, such as arc lamps, which make them an almost ideal light source for use in confocal microscopy. These properties are:
  • High degree of monochromaticity

  • Small divergence

  • High brightness

  • High degree of spatial and temporal coherence

  • Plane polarized emission (for many types)

  • A Gaussian beam profile (can be obtained by special optics)

Keywords

Laser System Continuous Wave Excimer Laser Optical Parametric Oscillator Sapphire Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adhav, R.S., January, 1986, Data sheet 714. Sum frequency mixing and second harmonic generation, Quantum Technology, Inc., Lake Mary, FL (407–323-7750).Google Scholar
  2. Alcala, J.R., Gratton, E., and Jameson, D.M., 1985, A multifrequency phase fluorometer using the harmonic content of a mode-locked laser, Anal. Instrum. 14:225–250.CrossRefGoogle Scholar
  3. Anderson, S.G., 1993, Commercial OPO produces high-energy tunable output, Laser Focus World April: 16–22.Google Scholar
  4. Anderson, S.G., 1994a, Narrow-linewidth OPO uses extraordinary resonance, Laser Focus World April: 15–18.Google Scholar
  5. Anderson, S.G., 1994b, New material promises tunable UV output, Laser Focus World May:20–23.Google Scholar
  6. ANSI Z-136.1–1992, ANSI Standard for the safe use of lasers, Laser Institute of America, Orlando, FL.Google Scholar
  7. Arecchi, F.T., and Schultz-Dubois, E.O., 1972, Laser Handbook, Vol. 1, North-Holland, Amsterdam.Google Scholar
  8. Art, J.J., and Goodman, M.B., 1993, Rapid scanning confocal microscopy, Methods Cell Biol 38:53–58.Google Scholar
  9. Ashkin, A., and Dziedzic, J.M., 1987, Optical trapping and manipulation of viruses and bacteria, Science 235:1517.PubMedCrossRefGoogle Scholar
  10. Austin, L., Scaggs, M., Sowada, U., and Kahlert, H.-J., 1989, A UV beam-delivery system designed for excimers, Photonics Spectra May:89–96.Google Scholar
  11. Baer, T.M., 1986, Diode laser pumping of solid state lasers, Laser Focus/Electro Optics June: 82–92.Google Scholar
  12. Bains, S., 1993, Holographic optics for when less is more, Laser Focus World April:151–154.Google Scholar
  13. Bass, M., and Stitch, M.L., 1985, Laser Handbook, Vol. 5, North-Holland, Amsterdam.Google Scholar
  14. Beausoleil, R.G., 1992, Highly efficient second harmonic generation, Lasers & Optronics May: 17–21.Google Scholar
  15. Bertolotti, M., 1983, Masers and Lasers: An Historical Approach, Adam Hilger, Bristol.Google Scholar
  16. Beverloo, H.B., van Schadewijk, A., van Gelderen-Boele, S., and Tanke, H.J., 1990, Inorganic phosphors as new luminescent labels for immunocyto-chemistry and time-resolved microscopy, Cytometry 11:784–792.PubMedCrossRefGoogle Scholar
  17. Birmingham, J.J., and Garland, P.B., Laser spectroscopic measurements of triplet-state lifetimes in both time and frequency domains, SPIE 909:370–376.Google Scholar
  18. Bloom A.L., 1968, Gas Lasers, Wiley, New York.Google Scholar
  19. Borst, W.L., Gangopadhyay, S., and Pleil, M.W., 1987, Fast analog technique for determining fluorescence lifetimes of multicomponent materials by pulsed laser, SPIE 743:15–23.CrossRefGoogle Scholar
  20. Brelje, T.C., Wessendorf, M. W., and Sorenson, R.L., 1993, Multicolor laser scanning confocal immunofluorescence microscopy: Practical application and limitations, Methods Cell Biol 38:120–123.Google Scholar
  21. Brown, D.C., 1981, High-Peak-Power Nd-Glass Laser Systems, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  22. Buican, T.N., Smyth, M.J., Crissman, C.C., Salzman, G.C., Stewart, C.C., and Martin, J.C., 1987, Automated single-cell manipulation and sorting by light trapping, Appl Optics 26:5311–5316.CrossRefGoogle Scholar
  23. Bürgin, C.D., 1988, A guide for eyeware for protection from laser light, LLL-TB-87, LLNL, P.O. Box 808, Livermore, CA.Google Scholar
  24. Butcher, S., 1994, Optical parametric oscillators open new doors to researchers, Photonics Spectra May: 133–138.Google Scholar
  25. Buurman, E.P., Sanders, R., Draaijer, A., Gerritsen, H.C., van Veen, J.J.F., Houpt, D.M., and Levine, Y.K., 1992a, Fluorescence lifetime imaging using a confocal laser scanning microscope, Scanning 14:155–159.CrossRefGoogle Scholar
  26. Buurman, E.P., Sanders, R., Draaijer, A., Gerritsen, H.C., and van Veen, J.J.F., 1992b, Distribution of ions in living single cells determined by confocal fluorescence lifetime imaging, 4th International Conference on Analytical Biochemistry, Proceedings of Anabiotec.Google Scholar
  27. Cannon, J., and Armas. M., 1993, Ultraviolet lasers expand uses of confocal microscopes, Laser Focus World January: 99–104.Google Scholar
  28. Carts, Y.A., 1994, Gradient-index lens tames spherical aberrations., Laser Focus World January: 142–143.Google Scholar
  29. Casperson, L.W., 1994, How phase plates transform and control laser beams, Laser Focus World May:223–228.Google Scholar
  30. Chenard, F., 1994, New applications abound for rare-earth doped fibers, Photonics Spectra May: 124–130.Google Scholar
  31. Clegg, R.M., Feddersen, B.A., Gratton, E., and Jovin, T., 1992, Time-resolved imaging fluorescence microscopy, SPIE Proc. 1640:448–460.CrossRefGoogle Scholar
  32. Cogswell, C.J., Hamilton, D.K., and Sheppard, C.J.R., 1992a, True color confocal reflection microscope: 442 He-Cd, 532 of freq. doubled Nd-YAG with 633 nm from He-Nelaser, J. Microsc. 165:49–60.CrossRefGoogle Scholar
  33. Cogswell, C.J., Hamilton, D.K., and Sheppard, C.J.R., 1992b, Colour confocal reflection microscopy used red, green and blue lasers, J. Microsc. 165:103–117.CrossRefGoogle Scholar
  34. Connor Davenport, C.M., and Gmitro, A.F., 1992, Angioscopic fluorescence imaging system, SPIE Proc. 1649:192–202.CrossRefGoogle Scholar
  35. Cundall, R.B., and Dale, R.E., 1983, Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology, Plenum Press, New York.Google Scholar
  36. Cunningham, R., 1993, Vertical-cavity diode lasers, Lasers & Optronics December: 19–20.Google Scholar
  37. Day, T., and Li Dessau, K.D., 1994, Narrow band tunable external-cavity diode lasers offer new tools for researchers, Photonics Spectra March:99–103.Google Scholar
  38. Demtröder, W., 1982, Laser Spectroscopy: Basic Concepts and Instrumentation, Springer-Verlag, Berlin.Google Scholar
  39. Denk, W, Strickler, J.H., and Webb, W.W., 1990, Two-photon laser scanning fluorescence microscopy, Science 248:73–76.PubMedCrossRefGoogle Scholar
  40. Draaijer, A., and Houpt, P.M., 1988, A standard video-rate confocal laser-scanning reflection and fluorescence microscope, Scanning 10:139–145.CrossRefGoogle Scholar
  41. Driscoll, W.G., and Vaughan W., 1978, Handbook of Optics, McGraw-Hill, New York.Google Scholar
  42. Duling, I.N., III, 1993, Compact fiber soliton lasers produce ultrashort pulses, Laser Focus World April:213–220.Google Scholar
  43. Dunning, F.B., 1978, Tunable-ultraviolet generation by sum-frequency mixing, Laser Focus Magazine May:72–76.Google Scholar
  44. Eden, J.G., 1988, UV and VUV lasers: Prospects and applications, Optics News April: 14–27.Google Scholar
  45. Ellis, G.W., 1979, A fiber-optic phase-randomizer for microscope illumination by a laser, J. Cell Biol. 83:303a.Google Scholar
  46. Ellis, G. W., 1988, Scanned aperture light microscopy, in: Proceedings of the 46th Annual Meeting of EMSA., San Francisco Press, San Francisco, pp. 48–49,.Google Scholar
  47. Erlandson, A.C., and Powell, H.T., 1991, Ten thousand flashlamps will drive the most-powerful laser, Laser Focus World August:95–100.Google Scholar
  48. Feddersen, B., vandeVen, M., and Gratton, E., 1989a, Parallel wavelength acquisition of fluorescence decay with picosecond resolution using an optical multichannel analyzer, Biophys. J. 55:190a.Google Scholar
  49. Feddersen, B., Piston, D.W., and Gratton, E., 1989b, Digital parallel acquisition in frequency domain fluorimetry, Rev. Sci. Instrum. 60:2929–2936.CrossRefGoogle Scholar
  50. Forrest, G.T., 1990, Laser tweezers manipulate cells, Laser Focus World, November 25.Google Scholar
  51. Forrester, S., 1994a, DC/DC converters: Theory of operation, Part 1, Sensors January:28–35.Google Scholar
  52. Forrester, S., 1994b, DC/DC converters: Theory of operation, Part 2, Sensors February:64–69.Google Scholar
  53. Franceschini, M.A., Fantini, S., and Gratton, E., 1994, LED’s in frequency domain spectroscopy of tissues, SPIE Proc. 2135:300–306.CrossRefGoogle Scholar
  54. Frederickson, C., and Kintz, G., 1992, New applications for diode-pumped lasers, Lasers & Optronics Ref. Handbook September: 163–165.Google Scholar
  55. Fricker, M.D., and White, N.S., 1992, Wavelength considerations in confocal microscopy of botanical specimens, J. Microsc. 166:29–42.CrossRefGoogle Scholar
  56. Friebele, E.J., and Kersey, A.D., 1994, Fiberoptic sensors measure up for smart structures, Laser Focus World May: 165–171.Google Scholar
  57. Gibson, J., 1988, Laser cooling water. The key to improved reliability, Photonics Spectra November: 117–124.Google Scholar
  58. Gibson, J., 1989, Laser water cooling loops deserve attention, Laser Focus World April: 123–129.Google Scholar
  59. Goldman, R.D., 1993, Air-to-liquid closed-loop cooling system meet the cost performance goals of today’s laser market, Lasers & Optronics February: 15–17.Google Scholar
  60. Gratton, E., Feddersen, B., and vandeVen, M., 1990, Parallel acquisition of fluorescence decay using array detectors, SPIE Proc. 1204:21–25.CrossRefGoogle Scholar
  61. Günther, A.H., 1993, Optics damage constraints laser design and performance, Laser Focus World February:83–87.Google Scholar
  62. Hammerling, P., Budgor, A.B. and Pinto, A., 1985, Tunable solid-state lasers, in: Proceedings of the First International Conference, La Jolla, CA, June 13–15, 1984, Springer-Verlag, Berlin, Springer Series in Optical Sciences, vol. 47.Google Scholar
  63. Hard, R., Zeh, R.D., and Allen, R.D., 1977, Phase-randomized laser illumination for microscopy, J. Cell Sci. 23:335–343.PubMedGoogle Scholar
  64. Hecht, E., and Zajac A., 1977, Optics, 2nd Ed., Addison-Wesley, Reading, MA.Google Scholar
  65. Hecht, J., 1992, Ion lasers deliver power at visible and UV wavelengths., Laser Focus World December:97–105.Google Scholar
  66. Hecht, J., 1993a, Laser action in fibers promises a revolution in communications, Laser Focus World February: 7 5–81.Google Scholar
  67. Hecht, J., 1993b, Nitrogen lasers produce ultraviolet light simply, Laser Focus World May:87–91.Google Scholar
  68. Hecht, J., 1993c, HeCd lasers offer economical blue and ultraviolet light, Laser Focus World August:67–71.Google Scholar
  69. Hecht, J., 1993d, Copper-vapor lasers find specialized applications, Laser Focus World October:99–103Google Scholar
  70. Hell, S., Witting, S., Schickfus, M.V., Wijnaendts van Resandt, A.W., Hunklin-ger, S., Smolka, E., and Neiger M., 1991, A confocal beam scanning white-light microscope, J. Microsc. 163:179–187.CrossRefGoogle Scholar
  71. Herrmann, J., and Wilhelmi, B., 1987, Lasers for Ultrashort Light Pulses, North-Holland, Amsterdam.Google Scholar
  72. Higgins, T.V., 1992, Nonlinear crystals: Where the colors of the rainbow begin, Laser Focus World January: 125–133.Google Scholar
  73. Hobbs, J.R., 1993a, Semiconductor lasers diversify, Laser Focus World April: 16.Google Scholar
  74. Hobbs, J.R., 1993b, Frequency-doubled ion laser produces UV light for resonance Raman spectroscopy, Laser Focus World May: 16–18.Google Scholar
  75. Hobbs, J.R., 1994, Offset-plane mirrors transform laser beams, Laser Focus World May:46–50.Google Scholar
  76. Hodgson, D.J., 1994, How power-supply selection can improve laser-diode performance, Laser Focus World January: 129–137.Google Scholar
  77. Huth, B.G., and Kuizenga, D., 1987, Green light from doubled Nd-YAG lasers. Lasers & Optronics October:59–61.Google Scholar
  78. Jovin, T.M., Arndt-Jovin, D.J., Robert-Nicoud, M., Schormann, T., Marriott, G., and Clegg, R.M. 1989, Luminescence digital imaging microscopy, Biophys. J. 55:432a.CrossRefGoogle Scholar
  79. Kaiser, W., 1988, Ultrashort Laser Pulses and Applications, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  80. Kaminskii, A.A., 1981, Laser Crystals: Their Physics and Properties, (translation) (H.F. Ivey, ed.), Springer-Verlag, Berlin.Google Scholar
  81. Keating, S.M., Wensell, T.G., Meyer, T., and Stryer, L., 1989, Nanosecond fluorescence and emission anisotropy kinetics of fura-2 in single cells, Biophys. J. 55:518a.Google Scholar
  82. Kiat, L.S., Tanaka, K., Tsumanuma, T., and Sanada, K., 1992, Ultrathin single-mode imagefiber for medical usage, SPIE Proc. 1649:208–217.CrossRefGoogle Scholar
  83. Kinosita, K., Ashikawa, I., Hibino, M., Shigemori, M., Yoshimura, H., Itoh, H., Nagayama, K., and Ikegami, A., 1988, Submicrosecond imaging under a pulsed-laser fluorescence microscope, SPIE 909:271–277.CrossRefGoogle Scholar
  84. Knutson, J.R., 1988, Fluorescence detection: Schemes to combine speed, sensitivity and spatial resolution, SPIE 909:51–60.CrossRefGoogle Scholar
  85. Kusumi, A., Tsuji, A., Murata, M., Sako, Y., Yoshizawa, A.C., Hayakawa, T., and Ohnishi, S.-L, 1988, Development of a time-resolved microfluorime-ter with a synchroscan streak camera and its application to studies of cell membranes, SPIE 909:350–351.CrossRefGoogle Scholar
  86. Lakowicz, J.R., 1983, Principles of Fluorescence Spectroscopy, Plenum Press, New York.CrossRefGoogle Scholar
  87. Lakowicz, J.R., 1992, Fluorescence lifetime sensing generates cellular images, Laser Focus World May:60–80.Google Scholar
  88. Lakowicz, J.R., Szmacinski, H., Nowaczyk, K., and Johnson, M.L., 1992, Fluorescence lifetime imaging of Ca2+ using visible wavelength excitation and emission, SPIE Proc. 1640:390–404CrossRefGoogle Scholar
  89. Lewis, R.R., Naylor, G.A. and Kearsley, A.J., 1988, Copper vapor lasers reach high power, Laser Focus/Electro Optics April:92–96.Google Scholar
  90. Lin, J.T. and Chen, C., 1987, Choosing a Non-linear Crystal, Lasers & Optronics November:59–63.Google Scholar
  91. Littlechild, J., and Mossier, D., 1988, Knowledge of arc-lamp aging and lifetime effects can help to avoid unpleasant surprises, Laser Focus/Electro Optics November: 67–76.Google Scholar
  92. Marriott, G., Clegg, R.M., Arndt-Jovin, D.J., and Jovin, T.M., 1991, Time-resolved imaging microscopy, Biophys. J. 60:1374–1387.PubMedCrossRefGoogle Scholar
  93. Marshall, L., 1994, Biological monitoring foreseen with ultraviolet light source, Laser Focus World April:83–87.Google Scholar
  94. Miller, P.J., 1991, Taming laser noise: Methods and applications, Photonics Spectra April: 183–187.Google Scholar
  95. Miller, P., and Hoyt, C., 1986, Turning down laser noise with power stabilizers, Photonics Spectra June: 129–134.Google Scholar
  96. Mollenauer, L.F., and White, J.C., 1987, Tunable Lasers, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  97. Mooradian, A., 1993, External cavity tunable diode lasers, Lasers & Optronics May:35–37.Google Scholar
  98. Morgan, C.G., Mitchell, A.C., and Murray, J.G., 1992a, Fluorescence decay time imaging photon detector with a radiofrequency photon correlation system. In: Time-Resolved Laser Spectroscopy in Biochemistry II (J. Lakowicz, ed.), SPIE Proc. 1204, pp. 798–807Google Scholar
  99. Morgan, C.G., Mitchell, A.C., and Murray, J.G., 1992b, Prospects for confocal imaging based on nanosecond fluorescence decay times, J. Microsc. 16:49–60.CrossRefGoogle Scholar
  100. Mortensen, P., 1994, Solid state lasers: Russians commercialize femtosecond laser, Laser Focus World April:36–38.Google Scholar
  101. Muckenheim, W., Austin, L. and Basting, D., 1988, The pulsed dye laser: Today’s technology, today’s uses, Photonics Spectra June:79–84.Google Scholar
  102. O’Connor, D.V., and Phillips, D., 1984, Time-Correlated Single Photon Counting, Academic Press, New York.Google Scholar
  103. Olsen, R., 1994, Ultrafast systems move to higher power, Lasers & Optronics January: 15–16.Google Scholar
  104. Perry, M.D., Payne, S.A., Ditmire, T., Beach, R., Quarles, G.J., Ignatuk, W., Olson, R., and Weston, J., 1993, Better materials trigger CnLiSAF laser development, Laser Focus World September:85–92.Google Scholar
  105. Peuse, B., 1988, Active stabilization of ion laser resonators. Active stabilization offers advantages in several areas, Lasers & Optronics Novem-ber:61–65.Google Scholar
  106. Piehler, D., 1993, Upconversionprocess creates compact blue/green lasers, Laser Focus World November:95–102.Google Scholar
  107. Piston, D.W., Sandison, D.R., and Webb, W.W., 1992, Time-resolved fluorescence imaging and background rejection by two-photon excitation, SPIE Proc. 1640:379–389CrossRefGoogle Scholar
  108. Piston, D.W., Kirby, M., Cheng, H., Lederer, W.J., and Webb, W.W., 1994, Two-photon excitation fluorescence imaging of three-dimensional calcium-ion activity, Appl. Optics 33:662–669.CrossRefGoogle Scholar
  109. Rapp, E.W., 1988, Design your cooling system for good laser performance, Laser Focus/Electro Optics September: 65–70.Google Scholar
  110. Rhodes, C.K., 1983, Excimer Lasers, 2nd ed., Springer-Verlag, Berlin.Google Scholar
  111. Rockwell, R.J., Jr., 1986, An introduction to exposure hazards and the evaluation of nominal hazard zones, Lasers & Applications May:97–103.Google Scholar
  112. Rockwell Associates Inc., Cincinnati, Ohio, 1983, Laser Safety Training Manual, 6th ed.Google Scholar
  113. Salin, F., Squire, J., Mourou, G., and Vaillantcourt, G., 1991, Multikilohertz Ti:Al2O3 amplifier for high-power femtosecond pulses, Opt. Lett. 16:1964–1966.PubMedCrossRefGoogle Scholar
  114. Schneckenburger, H., Strauss, W., Rueck, A., Seidlitz, H.K., and Wessels, J.M., 1992, Microscopic fluorescence spectroscopy and diagnosis, Opt. Eng. 31:995–999.CrossRefGoogle Scholar
  115. Schneider, D.J., and Williams, D.C., 1993, Fighting corrosion in laser cooling systems, Laser Focus World December: 110.Google Scholar
  116. Scifres, D.R., 1994, Diode lasers ride the wave of progress, Photonics Spectra January: 84–85.Google Scholar
  117. Sliney, D.H., 1986, Laser safety. The newest face on an old standard, Photonics Spectra April:83–96.Google Scholar
  118. Sliney, D.H., 1994, Laser safety concepts are changing, Laser Focus World May, 185–192.Google Scholar
  119. Sliney, D., and Wolbarsht, M., 1980, Safety with Lasers and Other Optical Sources: A Comprehensive Handbook, Plenum Press, New York.Google Scholar
  120. Smith, B., 1986, Lamps for pumping solid-state lasers: Performance and optimization, Laser Focus/Electro Optics September:58–73.Google Scholar
  121. Smith, K., and Lucek, J.K., 1993, Modelocked fiber lasers promise high-speed data networks, Laser Focus World October: 85–91.Google Scholar
  122. Snyder, J.J., and Cable, A.E., 1993, Cylindrical microlenses improve laser-diode beams, Laser Focus World, February:97–100.Google Scholar
  123. So, P.T.C., French T., and Gratton, E., 1994, A frequency domain time-resolved microscope using a fast-scan CCD camera, SPIE Proc. 2137:83–92.CrossRefGoogle Scholar
  124. Soileau, M.J., 1987, Laser-induced damage, Photonics Spectra November: 109–114.Google Scholar
  125. Stitch, M.L., 1979, Laser Handbook, Vol. 3, North-Holland, Amsterdam.Google Scholar
  126. Szarowski, D.H., Smith, K.I., Herchenroder, A., Matuszek, G., Swann, J.W., and Turner, J.N., 1992, Optimized reflection imaging in laser confocal microscopy and its application to neurobiology: Modification to the Biorad MRC-500, Scanning 14:104–111.CrossRefGoogle Scholar
  127. Tanke, H.J., 1989, Does light microscopy have a future? J. Microsc. 155:405–418.CrossRefGoogle Scholar
  128. Tebo, A.R., 1988, Scientists develop useful optical materials, Laser Focus/Electro Optics August: 103–110.Google Scholar
  129. Unger, B., 1994, Device saves laser diodes from electrostatic-discharge damage, Laser Focus World May:23 8–240.Google Scholar
  130. vandeVen, M., and Gratton, E., 1992, Time-resolved fluorescence lifetime imaging, in: Optical Microscopy: Emerging Methods and Applications (B. Herman, ed.), Academic Press, New York, pp. 373–402.Google Scholar
  131. Wang, X.F., 1990, Fundamental studies on time-resolved fluorescence image spectroscopy techniques, Dissertation, Osaka University.Google Scholar
  132. Wang, X.F., Kitajima, S., Uchida, T., Coleman, D.M., and Minami, S., 1990, Time-resolved fluorescence microscopy using multichannel photon counting, Appl. Spectrosc. 44:25–30.CrossRefGoogle Scholar
  133. Wang, X.F., Periasamy, A., Herman, B., and Coleman, D.M., 1992, Fluorescence lifetime imaging microscopy (FLIM): Instrumentation and applications, Crit. Rev. Anal. Chem. 23:369–395.CrossRefGoogle Scholar
  134. Weast, R.C., and Tuve, G.L., 1971, Handbook of Lasers with Selected Data on Optical Technology, CRC Press, Cleveland, Ohio.Google Scholar
  135. Wilson, D.A., Vickers, G.H., and Hieftje, G.M., 1985, Novel techniques for the determination of fluorescence lifetimes, Anal. lustrum. 14:483–502.CrossRefGoogle Scholar
  136. Winburn, D.C., 1985, Practical Laser Safety, Dekker, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Enrico Gratton
    • 1
  • Martin J. vandeVen
    • 2
  1. 1.Department of Physics, Laboratory for Fluorescence DynamicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.ISS Inc.ChampaignUSA

Personalised recommendations