Video-Rate Confocal Microscopy

  • Roger Y. Tsien
  • Brian J. Bacskai


Most current confocal laser-scanning microscopes require <0.1 sec, more typically ~1 sec, to complete a single full scan of the field of view. Such speeds are considerably slower than conventional video displays or the psychophysical flicker-fusion frequency, so they give the visual impression of discontinuous image acquisition, rather than a smoothly evolving scene. This speed limitation is imposed by the scanning rates of conventional scanners based on linear servo galvanometers, not from any inherent feature of the confocal principle. Scanning at video rate has many advantages. The most obvious but not necessarily the most important is the psychophysical appearance of smooth motion or evolution, which greatly aids the user to locate and focus on regions of interest. Many biochemical signals inside living cells, particularly membrane potential and cytosolic free Ca2+and Na+, undergo changes in the time scale of seconds down to tenths of milliseconds. Such signals are especially important in neurobiology because neurons rely on such biochemistry to perform their special function of fast information processing.


Image Processor Optical Layout Color Insert Neonatal Cardiac Myocytes Polarize Beamsplitter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, S.R., Harootunian, A.T., Buechler, Y.J., Taylor, S.S., and Tsien, R.Y., 1991, Fluorescence ratio imaging of cyclic AMP in single cells. Nature349:694–697.PubMedCrossRefGoogle Scholar
  2. Adams, S.R., Bacskai, B.J., Taylor, S.S., and Tsien, R.Y., 1993, Optical probes for cyclic AMP. In: Fluorescent Probes for Biological Activity of Living Cells—A Practical Guide(W.T. Mason, ed.), Academic Press, San Diego, pp. 133–149.Google Scholar
  3. Art, J.J., and Goodman, M.B., 1993, Rapid scanning confocal microscopy. In: Cell Biological Applications of Confocal Microscopy: Methods in Cell Biology(B. Matsumoto, ed.), Academic Press, San Diego, San Diego, pp. 44–77.Google Scholar
  4. Bacskai, B.J., Hochner, B., Mahaut-Smith, M., Adams, S.R., Kaang, B.-K., Kandel, E.R., and Tsien, R.Y., 1993, Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysiasensory neurons, Science260:222–226.PubMedCrossRefGoogle Scholar
  5. Cohen-Sabban, J., Rodier, J.C., Roussel, A., and Simon, J., 1984, Ophthalmoscope—A balayage optique. J. Optics (Paris)15:425–430.CrossRefGoogle Scholar
  6. Denk, W., Strickler, J.H., and Webb, W.W., 1990, Two-photon laser scanning fluorescence microscopy, Science248:73–76.PubMedCrossRefGoogle Scholar
  7. Dickson, L.D., and Sincerbox, G.T., 1991, Holographic scanners for bar code readers. In: Optical Scanning(G.F. Marshall, ed.), Marcel Dekker, New York, pp. 159–212.Google Scholar
  8. Draaijer, A., and Houpt, P.M., 1988, A standard video-rate confocal laser-scanning reflected and fluorescence microscope, Scanning10:139–145.CrossRefGoogle Scholar
  9. Draaijer, A., and Houpt, P.M., 1993, High scan-rate confocal laser scanning microscopy. In: Electronic Light Microscopy: Techniques in Modern Biomedical Microscopy(D. Shotton, ed.), Wiley-Liss, New York, pp. 273–287.Google Scholar
  10. Froome, K.D., and Essen, L., 1969, The Velocity of Light and Radio Waves, Academic Press.Google Scholar
  11. Gan, X.S., and Sheppard, C.J.R., 1993, Detectability: A new criterion for evaluation of the confocal microscope, Scanning15:187–192.CrossRefGoogle Scholar
  12. Goldstein, S.R., Hubin, T., Rosenthal, S., and Washburn, C., 1990, A confocal video-rate laser-beam scaning reflected-light microscope with no moving parts, J. Microsc.157:29–38.PubMedCrossRefGoogle Scholar
  13. Goldstein, S.R., Hubin, T., and Smith, T.G., Jr., 1992, An improved no-moving-parts video-rate confocal microscope, Micron Microsc. Acta23:437–446.CrossRefGoogle Scholar
  14. Gottlieb, M., 1991, Acoustooptic scanners and modulators. In: Optical Scanning(G.F. Marshall, ed.), Marcel Dekker, New York, pp. 615–686.Google Scholar
  15. Kramer, C.J., 1991, Holographic deflector for graphic arts systems. In: Optical Scanning(G.F. Marshall, ed.), Marcel Dekker, New York, pp. 213–350.Google Scholar
  16. Marshall, G.F. (ed.), 1991, Optical Scanning, Marcel Dekker, New York.Google Scholar
  17. Minta, A., Kao, J.P.Y., and Tsien, R.Y., 1989, Fluorescent indicators for cytoso-lic calcium based on rhodamine and fluorescein chromophores, J. Biol. Chem.264:8171–8178.PubMedGoogle Scholar
  18. Montagu, J.I., 1991, Galvanometric and resonant low-inertia scanners. In: Optical Scanning(G.F. Marshall, ed.), Marcel Dekker, New York, pp. 525–613.Google Scholar
  19. Niggli, E., and Lederer, W.J., 1990, Real-time confocal microscopy and calcium measurements in heart muscle cells: Towards the development of a fluorescence microscope with high temporal and spatial resolution, Cell Calcium11:121–130.PubMedCrossRefGoogle Scholar
  20. Rizzuto, R., Simpson, A.W.M., Brini, M., and Pozzan, T., 1992, Rapid changes of mitochondrial Ca2+revealed by specifically targeted recombinant aequorin, Nature358:325–327.PubMedCrossRefGoogle Scholar
  21. Round, F.E., Crawford, R.M., and Mann, D.G., 1990, The Diatoms: Biology and Morphology of the Genera, Cambridge University Press, New York.Google Scholar
  22. Sammak, P.J., Adams, S.R., Harootunian, A.T., Schliwa, M., and Tsien, R.Y., 1992, Intracellular cyclic AMP not Ca2+determines the direction of vesicle movement in melanophores: Direct measurements by fluorescence ratio imaging, J. Cell Biol.117:57–72.PubMedCrossRefGoogle Scholar
  23. Shepherd, J., 1991a, Bearings for rotary scanners. In: Optical Scanning(G.F. Marshall, ed.), Marcel Dekker, New York, pp. 477–524.Google Scholar
  24. Shepherd, J., 1991b, Windage of rotating polygons. In: Optical Scanning(G.F. Marshall, ed.), Marcel Dekker, New York, pp. 451–476.Google Scholar
  25. Sherman, R.J., 1991, Polygonal scanners: Applications, performance, and design. In: Optical Scanning(G.F. Marshall, ed.), Marcel Dekker, New York, pp. 351–408.Google Scholar
  26. Sims, P.A., 1983, A taxonomic study of the genus Epithemiawith special reference to the type species E. turgida(Ehrenb.) Kütz, Bacillaria6:211–235.Google Scholar
  27. Takamatsu, T., and Wier, W.G., 1990, High temporal resolution video imaging of intracellular calcium, Cell Calcium11:111–120.PubMedCrossRefGoogle Scholar
  28. Taylor, W.H., 1984, Characteristics of a new compact video rate optical scanner (CVROS), SPIE 518:7–14.CrossRefGoogle Scholar
  29. Toyen, G., 1976, Generation of precision pixel clock in laser printers and scanners, SPIE 84:138–145.CrossRefGoogle Scholar
  30. Tsien, R.Y., Bacskai, B.J., and Adams, S.R., 1993, FRET for studying intracellular signalling, Trends Cell Biol. 3:242–245.PubMedCrossRefGoogle Scholar
  31. Tsien, R.Y., and Harootunian, A.T., 1990, Practical design criteria for a dynamic ratio imaging system, Cell Calcium 11:93–109.PubMedCrossRefGoogle Scholar
  32. Webb, R.H., Hughes, G.W., and Pomerantzeff, O., 1980, Flying spot TV ophthalmoscope, Appl. Optics 19:2991–2997.CrossRefGoogle Scholar
  33. Webb, R.H., 1984, Optics for laser rasters. Appl. Optics 23:3680–3683.CrossRefGoogle Scholar
  34. Webb, R.H., Hughes, G.W., and Delori, F.C., 1987, Confocal scanning laser ophthalmoscope, Appl. Optics 26:1492–1499.CrossRefGoogle Scholar
  35. White, J.G., Amos, W.B., and Fordham, M., 1987, An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy, J. Cell Biol. 105:41–48.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Roger Y. Tsien
    • 1
  • Brian J. Bacskai
    • 1
  1. 1.Howard Hughes Medical Institute and Department of Pharmacology 0647University of California, San DiegoLa JollaUSA

Personalised recommendations