Skip to main content

Comparison of Wide-Field/Deconvolution and Confocal Microscopy for 3D Imaging

  • Chapter
Handbook of Biological Confocal Microscopy

Abstract

Optical microscopy has always been a central technique to biological research, but in recent years its importance has vastly increased, mainly because of the introduction of epifluorescence imaging, which gives very sensitive detection, coupled with a multitude of highly specific fluorescent probes. Furthermore, it is often possible to obtain useful images noninvasively at light levels that are not damaging to living cells. Microinjection and other cell-loading methods can therefore be used in combination with fluorescence microscopy to analyze and modify subcellular structure and function in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agard, D. A., and Sedat, J.W., 1983, Three-dimensional architecture of apolytene nucleus, Nature 302:676–681.

    Article  PubMed  CAS  Google Scholar 

  • Agard, D.A., Hiraoka, Y., Shaw, P.J., and Sedat J.W., 1989, Fluorescence microscopy in three dimensions, Methods Cell Biol. 30:353–378.

    Article  PubMed  CAS  Google Scholar 

  • Aikens, R.S., Agard, D.A., and Sedat, J.W., 1989, Solid state imagers for microscopy, Methods Cell Biol. 29:291–313.

    Article  PubMed  CAS  Google Scholar 

  • Carrington, W.A., Fogarty, K.E., and Fay, F.S., 1990, 3D fluorescence imaging of single cells using image restoration. In: Non-invasive Techniques in Cell Biology (Foskett and Grinstein, eds.), A.R. Liss, New York.

    Google Scholar 

  • Carter, K.C., Bowman, D., Carrington, W., Fogarty, K., McNeil, J.A., Fay, F.S., and Lawrence, J.B., 1993, A three-dimensional view of precursor messenger RNA metabolism within the mammalian nucleus, Science 259:1330–1335.

    Article  PubMed  CAS  Google Scholar 

  • Castleman, K.R., 1979, Digital Image Processing, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Erhardt, A., Zinser, G., Komitowski, D., and Bille, J., 1985, Reconstructing 3D light microscopic images by digital image processing, Appl. Opt. 24:194.

    Article  PubMed  CAS  Google Scholar 

  • Fay, F.S., Carrington, W., andFogarty, K.E., 1989, Three-dimensional molecular distribution in single cells analyzed using a digital imaging microscope, J. Microsc, 153 (pt 2): 133–149.

    Article  PubMed  CAS  Google Scholar 

  • Flanders, D.J., Rawlins, D.J., Shaw, P.J., and Lloyd, C.W., 1990, Re-establishment of the interphase microtubule array in vacuolated plant cells, studied by confocal microscopy and 3-D imaging, Development 110:897–904.

    Google Scholar 

  • Frieden, B.R., 1984, Maximum-likelihood estimates of spectra. In: Deconvolu-tion with Applications in Spectroscopy (P.A. Jansson, ed), Academic Press, New York, pp. 229–261.

    Google Scholar 

  • Highett, M.I., Rawlins, D.J., and Shaw, P.J., 1993a, Different patterns of rDNA distribution in Pisum sativum nucleoli correlate with different levels of nucleolar activity, J. Cell Sci. 104:843–852.

    CAS  Google Scholar 

  • Highett, M.I., Beven, A.F., and Shaw, P.J., 1993b, Localization of 5S genes and transcripts in Pisum sativum nuclei, J. Cell Sci. 105:1151–1158.

    PubMed  CAS  Google Scholar 

  • Hiraoka, Y., Sedat, J.W., and Agard, D.A., 1988, The use of a charge-coupled device for quantitative optical microscopy of biological structures, Science 238:36–41.

    Article  Google Scholar 

  • Hiraoka, Y., Minden, J.S., Swedlow, J.R., Sedat, J.W., and Agard, D.A., 1989, Focal points for chromosome condensation and decondensation from three-dimensional in vivo time-lapse microscopy, Nature 342:293–296.

    Article  PubMed  CAS  Google Scholar 

  • Hiraoka, Y., Sedat, J.W., and Agard, D.A., 1990, Determination of three-dimensional imaging properties of a light microscope system: Partial confocal behaviour in epifluorescence microscopy, Biophys. J. 57:325–333.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, T.J., 1988, Maximum-likelihood restoration adapted for noncoherent optical imaging, J. Opt. Soc. Am. A5:666–673.

    Article  CAS  Google Scholar 

  • Holmes, T.J., and Liu, Y.-H., 1992, Image restoration for 2-D and 3-D fluorescence microscopy. In: Visualization in Biomedical Microscopies (A. Kriete, ed), VCH, Weinheim, Germany.

    Google Scholar 

  • Inoué, S., 1986, Video Microscopy, Plenum Press, New York.

    Google Scholar 

  • Jansson, P.A., Hunt, R.M., and Plyler, E.K., 1970, J. Opt. Soc. Am. 60:596.

    Article  CAS  Google Scholar 

  • Pawley, J.B., 1994, The sources of noise in three-dimensional microscopical data sets. In: Three-dimensional Confocal Microscopy: Volume Investigation of Biological Specimens (J.K. Stevens, L.R. Mills, and J.E. Trogadis, eds.), Academic Press, New York, pp. 48–94.

    Google Scholar 

  • Pawley, J.B., and Smallcomb, A., 1992, An introduction to practical confocal microscopy: The ultimate form of biological light microscopy? Acta Microsc. 1:58–73.

    Google Scholar 

  • Sandison, D.R., Piston, D.W., and Webb, W.W., 1994, Background rejection and optimization of signal-to-noise in confocal microscopy. In: Three-Dimensional Confocal Microscopy: Volume Investigation of Biological Specimens (J.K Stevens, L.R. Mills, and J. E Trogadis., eds), Academic Press, New York, pp. 29–47.

    Chapter  Google Scholar 

  • Self, S.A., 1983, Focusing of spherical Gaussian beams, Appl. Opt. 22:658–661.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, P.J., 1993, Computer reconstruction in three-dimensional fluorescence microscopy. In: Electronic Light Microscopy (D. Shotton, ed), Wiley-Liss, New York, pp. 211–230.

    Google Scholar 

  • Shaw, P.J., and Rawlins, D.J., 1991a, Three-dimensional fluorescence microscopy, Prog. Biophys. Molec. Biol. 56:187–213.

    Article  CAS  Google Scholar 

  • Shaw, P.J., and Rawlins, D.J., 1991b, The point spread function of a confocal microscope: Its measurement and use in deconvolution of 3D data, J. Microsc. 163:151–165.

    Article  Google Scholar 

  • Sheppard, C.J.R., and Choudhury, A., 1977, Image formation in the scanning microscope, Opt. Acta. 24:1051–1073.

    Article  Google Scholar 

  • Stokseth, P.A., 1969, Properties of a defocused optical system, J. Opt. Soc. Am. 59:1314–1321.

    Article  Google Scholar 

  • Wilson, T., 1993, Image formation in confocal microscopy. In: Electronic Light Microscopy (D.M. Shotton, ed), Wiley-Liss, New York.

    Google Scholar 

  • Young, I.T., 1989, Image fidelity: Characterizing the imaging transfer function, Methods Cell Biol. 30:2–47.

    Google Scholar 

  • Zhang, D.H., Wadsworth, P., and Hepler, P.K., 1990, Microtubule dynamics in living dividing plant cells: Confocal imaging of microinjected fluorescent brain tubulin, Proc. Natl Acad. Sci. USA. 87:8820–8824.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shaw, P.J. (1995). Comparison of Wide-Field/Deconvolution and Confocal Microscopy for 3D Imaging. In: Pawley, J.B. (eds) Handbook of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5348-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5348-6_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5350-9

  • Online ISBN: 978-1-4757-5348-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics